Add LabelStudio integration (#8880)

This PR introduces [Label Studio](https://labelstud.io/) integration
with LangChain via `LabelStudioCallbackHandler`:

- sending data to the Label Studio instance
- labeling dataset for supervised LLM finetuning
- rating model responses
- tracking and displaying chat history
- support for custom data labeling workflow

### Example

```
chat_llm = ChatOpenAI(callbacks=[LabelStudioCallbackHandler(mode="chat")])
chat_llm([
    SystemMessage(content="Always use emojis in your responses."),
        HumanMessage(content="Hey AI, how's your day going?"),
    AIMessage(content="🤖 I don't have feelings, but I'm running smoothly! How can I help you today?"),
        HumanMessage(content="I'm feeling a bit down. Any advice?"),
    AIMessage(content="🤗 I'm sorry to hear that. Remember, it's okay to seek help or talk to someone if you need to. 💬"),
        HumanMessage(content="Can you tell me a joke to lighten the mood?"),
    AIMessage(content="Of course! 🎭 Why did the scarecrow win an award? Because he was outstanding in his field! 🌾"),
        HumanMessage(content="Haha, that was a good one! Thanks for cheering me up."),
    AIMessage(content="Always here to help! 😊 If you need anything else, just let me know."),
        HumanMessage(content="Will do! By the way, can you recommend a good movie?"),
])
```

<img width="906" alt="image"
src="https://github.com/langchain-ai/langchain/assets/6087484/0a1cf559-0bd3-4250-ad96-6e71dbb1d2f3">


### Dependencies
- [label-studio](https://pypi.org/project/label-studio/)
- [label-studio-sdk](https://pypi.org/project/label-studio-sdk/)

https://twitter.com/labelstudiohq

---------

Co-authored-by: nik <nik@heartex.net>
This commit is contained in:
niklub 2023-08-11 19:24:10 +01:00 committed by GitHub
parent 8cb2594562
commit 16af5f8690
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 776 additions and 0 deletions

View File

@ -0,0 +1,382 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"collapsed": true,
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"# Label Studio\n",
"\n",
"<div>\n",
"<img src=\"https://labelstudio-pub.s3.amazonaws.com/lc/open-source-data-labeling-platform.png\" width=\"400\"/>\n",
"</div>\n",
"\n",
"Label Studio is an open-source data labeling platform that provides LangChain with flexibility when it comes to labeling data for fine-tuning large language models (LLMs). It also enables the preparation of custom training data and the collection and evaluation of responses through human feedback.\n",
"\n",
"In this guide, you will learn how to connect a LangChain pipeline to Label Studio to:\n",
"\n",
"- Aggregate all input prompts, conversations, and responses in a single LabelStudio project. This consolidates all the data in one place for easier labeling and analysis.\n",
"- Refine prompts and responses to create a dataset for supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) scenarios. The labeled data can be used to further train the LLM to improve its performance.\n",
"- Evaluate model responses through human feedback. LabelStudio provides an interface for humans to review and provide feedback on model responses, allowing evaluation and iteration."
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"## Installation and setup"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"First install latest versions of Label Studio and Label Studio API client:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"!pip install -U label-studio label-studio-sdk openai"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"Next, run `label-studio` on the command line to start the local LabelStudio instance at `http://localhost:8080`. See the [Label Studio installation guide](https://labelstud.io/guide/install) for more options."
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"You'll need a token to make API calls.\n",
"\n",
"Open your LabelStudio instance in your browser, go to `Account & Settings > Access Token` and copy the key.\n",
"\n",
"Set environment variables with your LabelStudio URL, API key and OpenAI API key:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"import os\n",
"\n",
"os.environ['LABEL_STUDIO_URL'] = '<YOUR-LABEL-STUDIO-URL>' # e.g. http://localhost:8080\n",
"os.environ['LABEL_STUDIO_API_KEY'] = '<YOUR-LABEL-STUDIO-API-KEY>'\n",
"os.environ['OPENAI_API_KEY'] = '<YOUR-OPENAI-API-KEY>'"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"## Collecting LLMs prompts and responses"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The data used for labeling is stored in projects within Label Studio. Every project is identified by an XML configuration that details the specifications for input and output data. \n",
"\n",
"Create a project that takes human input in text format and outputs an editable LLM response in a text area:\n",
"\n",
"```xml\n",
"<View>\n",
"<Style>\n",
" .prompt-box {\n",
" background-color: white;\n",
" border-radius: 10px;\n",
" box-shadow: 0px 4px 6px rgba(0, 0, 0, 0.1);\n",
" padding: 20px;\n",
" }\n",
"</Style>\n",
"<View className=\"root\">\n",
" <View className=\"prompt-box\">\n",
" <Text name=\"prompt\" value=\"$prompt\"/>\n",
" </View>\n",
" <TextArea name=\"response\" toName=\"prompt\"\n",
" maxSubmissions=\"1\" editable=\"true\"\n",
" required=\"true\"/>\n",
"</View>\n",
"<Header value=\"Rate the response:\"/>\n",
"<Rating name=\"rating\" toName=\"prompt\"/>\n",
"</View>\n",
"```\n",
"\n",
"1. To create a project in Label Studio, click on the \"Create\" button. \n",
"2. Enter a name for your project in the \"Project Name\" field, such as `My Project`.\n",
"3. Navigate to `Labeling Setup > Custom Template` and paste the XML configuration provided above."
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"You can collect input LLM prompts and output responses in a LabelStudio project, connecting it via `LabelStudioCallbackHandler`:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"from langchain.llms import OpenAI\n",
"from langchain.callbacks import LabelStudioCallbackHandler\n",
"\n",
"llm = OpenAI(\n",
" temperature=0,\n",
" callbacks=[\n",
" LabelStudioCallbackHandler(\n",
" project_name=\"My Project\"\n",
" )]\n",
")\n",
"print(llm(\"Tell me a joke\"))"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"In the Label Studio, open `My Project`. You will see the prompts, responses, and metadata like the model name. "
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"## Collecting Chat model Dialogues"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can also track and display full chat dialogues in LabelStudio, with the ability to rate and modify the last response:\n",
"\n",
"1. Open Label Studio and click on the \"Create\" button.\n",
"2. Enter a name for your project in the \"Project Name\" field, such as `New Project with Chat`.\n",
"3. Navigate to Labeling Setup > Custom Template and paste the following XML configuration:\n",
"\n",
"```xml\n",
"<View>\n",
"<View className=\"root\">\n",
" <Paragraphs name=\"dialogue\"\n",
" value=\"$prompt\"\n",
" layout=\"dialogue\"\n",
" textKey=\"content\"\n",
" nameKey=\"role\"\n",
" granularity=\"sentence\"/>\n",
" <Header value=\"Final response:\"/>\n",
" <TextArea name=\"response\" toName=\"dialogue\"\n",
" maxSubmissions=\"1\" editable=\"true\"\n",
" required=\"true\"/>\n",
"</View>\n",
"<Header value=\"Rate the response:\"/>\n",
"<Rating name=\"rating\" toName=\"dialogue\"/>\n",
"</View>\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.schema import HumanMessage, SystemMessage\n",
"from langchain.callbacks import LabelStudioCallbackHandler\n",
"\n",
"chat_llm = ChatOpenAI(callbacks=[\n",
" LabelStudioCallbackHandler(\n",
" mode=\"chat\",\n",
" project_name=\"New Project with Chat\",\n",
" )\n",
"])\n",
"llm_results = chat_llm([\n",
" SystemMessage(content=\"Always use a lot of emojis\"),\n",
" HumanMessage(content=\"Tell me a joke\")\n",
"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In Label Studio, open \"New Project with Chat\". Click on a created task to view dialog history and edit/annotate responses."
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"## Custom Labeling Configuration"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"You can modify the default labeling configuration in LabelStudio to add more target labels like response sentiment, relevance, and many [other types annotator's feedback](https://labelstud.io/tags/).\n",
"\n",
"New labeling configuration can be added from UI: go to `Settings > Labeling Interface` and set up a custom configuration with additional tags like `Choices` for sentiment or `Rating` for relevance. Keep in mind that [`TextArea` tag](https://labelstud.io/tags/textarea) should be presented in any configuration to display the LLM responses.\n",
"\n",
"Alternatively, you can specify the labeling configuration on the initial call before project creation:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"ls = LabelStudioCallbackHandler(project_config='''\n",
"<View>\n",
"<Text name=\"prompt\" value=\"$prompt\"/>\n",
"<TextArea name=\"response\" toName=\"prompt\"/>\n",
"<TextArea name=\"user_feedback\" toName=\"prompt\"/>\n",
"<Rating name=\"rating\" toName=\"prompt\"/>\n",
"<Choices name=\"sentiment\" toName=\"prompt\">\n",
" <Choice value=\"Positive\"/>\n",
" <Choice value=\"Negative\"/>\n",
"</Choices>\n",
"</View>\n",
"''')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note that if the project doesn't exist, it will be created with the specified labeling configuration."
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"## Other parameters"
]
},
{
"cell_type": "markdown",
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"The `LabelStudioCallbackHandler` accepts several optional parameters:\n",
"\n",
"- **api_key** - Label Studio API key. Overrides environmental variable `LABEL_STUDIO_API_KEY`.\n",
"- **url** - Label Studio URL. Overrides `LABEL_STUDIO_URL`, default `http://localhost:8080`.\n",
"- **project_id** - Existing Label Studio project ID. Overrides `LABEL_STUDIO_PROJECT_ID`. Stores data in this project.\n",
"- **project_name** - Project name if project ID not specified. Creates a new project. Default is `\"LangChain-%Y-%m-%d\"` formatted with the current date.\n",
"- **project_config** - [custom labeling configuration](#custom-labeling-configuration)\n",
"- **mode**: use this shortcut to create target configuration from scratch:\n",
" - `\"prompt\"` - Single prompt, single response. Default.\n",
" - `\"chat\"` - Multi-turn chat mode.\n",
"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "labelops",
"language": "python",
"name": "labelops"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
}
},
"nbformat": 4,
"nbformat_minor": 1
}

View File

@ -18,6 +18,7 @@ from langchain.callbacks.file import FileCallbackHandler
from langchain.callbacks.flyte_callback import FlyteCallbackHandler from langchain.callbacks.flyte_callback import FlyteCallbackHandler
from langchain.callbacks.human import HumanApprovalCallbackHandler from langchain.callbacks.human import HumanApprovalCallbackHandler
from langchain.callbacks.infino_callback import InfinoCallbackHandler from langchain.callbacks.infino_callback import InfinoCallbackHandler
from langchain.callbacks.labelstudio_callback import LabelStudioCallbackHandler
from langchain.callbacks.manager import ( from langchain.callbacks.manager import (
get_openai_callback, get_openai_callback,
tracing_enabled, tracing_enabled,
@ -68,4 +69,5 @@ __all__ = [
"wandb_tracing_enabled", "wandb_tracing_enabled",
"FlyteCallbackHandler", "FlyteCallbackHandler",
"SageMakerCallbackHandler", "SageMakerCallbackHandler",
"LabelStudioCallbackHandler",
] ]

View File

@ -0,0 +1,392 @@
import os
import warnings
from datetime import datetime
from enum import Enum
from typing import Any, Dict, List, Optional, Tuple, Union
from uuid import UUID
from langchain.callbacks.base import BaseCallbackHandler
from langchain.schema import (
AgentAction,
AgentFinish,
BaseMessage,
ChatMessage,
Generation,
LLMResult,
)
class LabelStudioMode(Enum):
PROMPT = "prompt"
CHAT = "chat"
def get_default_label_configs(
mode: Union[str, LabelStudioMode]
) -> Tuple[str, LabelStudioMode]:
_default_label_configs = {
LabelStudioMode.PROMPT.value: """
<View>
<Style>
.prompt-box {
background-color: white;
border-radius: 10px;
box-shadow: 0px 4px 6px rgba(0, 0, 0, 0.1);
padding: 20px;
}
</Style>
<View className="root">
<View className="prompt-box">
<Text name="prompt" value="$prompt"/>
</View>
<TextArea name="response" toName="prompt"
maxSubmissions="1" editable="true"
required="true"/>
</View>
<Header value="Rate the response:"/>
<Rating name="rating" toName="prompt"/>
</View>""",
LabelStudioMode.CHAT.value: """
<View>
<View className="root">
<Paragraphs name="dialogue"
value="$prompt"
layout="dialogue"
textKey="content"
nameKey="role"
granularity="sentence"/>
<Header value="Final response:"/>
<TextArea name="response" toName="dialogue"
maxSubmissions="1" editable="true"
required="true"/>
</View>
<Header value="Rate the response:"/>
<Rating name="rating" toName="dialogue"/>
</View>""",
}
if isinstance(mode, str):
mode = LabelStudioMode(mode)
return _default_label_configs[mode.value], mode
class LabelStudioCallbackHandler(BaseCallbackHandler):
"""Label Studio callback handler.
Provides the ability to send predictions to Label Studio
for human evaluation, feedback and annotation.
Parameters:
api_key: Label Studio API key
url: Label Studio URL
project_id: Label Studio project ID
project_name: Label Studio project name
project_config: Label Studio project config (XML)
mode: Label Studio mode ("prompt" or "chat")
Examples:
>>> from langchain.llms import OpenAI
>>> from langchain.callbacks import LabelStudioCallbackHandler
>>> handler = LabelStudioCallbackHandler(
... api_key='<your_key_here>',
... url='http://localhost:8080',
... project_name='LangChain-%Y-%m-%d',
... mode='prompt'
... )
>>> llm = OpenAI(callbacks=[handler])
>>> llm.predict('Tell me a story about a dog.')
"""
DEFAULT_PROJECT_NAME = "LangChain-%Y-%m-%d"
def __init__(
self,
api_key: Optional[str] = None,
url: Optional[str] = None,
project_id: Optional[int] = None,
project_name: str = DEFAULT_PROJECT_NAME,
project_config: Optional[str] = None,
mode: Union[str, LabelStudioMode] = LabelStudioMode.PROMPT,
):
super().__init__()
# Import LabelStudio SDK
try:
import label_studio_sdk as ls
except ImportError:
raise ImportError(
f"You're using {self.__class__.__name__} in your code,"
f" but you don't have the LabelStudio SDK "
f"Python package installed or upgraded to the latest version. "
f"Please run `pip install -U label-studio-sdk`"
f" before using this callback."
)
# Check if Label Studio API key is provided
if not api_key:
if os.getenv("LABEL_STUDIO_API_KEY"):
api_key = str(os.getenv("LABEL_STUDIO_API_KEY"))
else:
raise ValueError(
f"You're using {self.__class__.__name__} in your code,"
f" Label Studio API key is not provided. "
f"Please provide Label Studio API key: "
f"go to the Label Studio instance, navigate to "
f"Account & Settings -> Access Token and copy the key. "
f"Use the key as a parameter for the callback: "
f"{self.__class__.__name__}"
f"(label_studio_api_key='<your_key_here>', ...) or "
f"set the environment variable LABEL_STUDIO_API_KEY=<your_key_here>"
)
self.api_key = api_key
if not url:
if os.getenv("LABEL_STUDIO_URL"):
url = os.getenv("LABEL_STUDIO_URL")
else:
warnings.warn(
f"Label Studio URL is not provided, "
f"using default URL: {ls.LABEL_STUDIO_DEFAULT_URL}"
f"If you want to provide your own URL, use the parameter: "
f"{self.__class__.__name__}"
f"(label_studio_url='<your_url_here>', ...) "
f"or set the environment variable LABEL_STUDIO_URL=<your_url_here>"
)
url = ls.LABEL_STUDIO_DEFAULT_URL
self.url = url
# Maps run_id to prompts
self.payload: Dict[str, Dict] = {}
self.ls_client = ls.Client(url=self.url, api_key=self.api_key)
self.project_name = project_name
if project_config:
self.project_config = project_config
self.mode = None
else:
self.project_config, self.mode = get_default_label_configs(mode)
self.project_id = project_id or os.getenv("LABEL_STUDIO_PROJECT_ID")
if self.project_id is not None:
self.ls_project = self.ls_client.get_project(int(self.project_id))
else:
project_title = datetime.today().strftime(self.project_name)
existing_projects = self.ls_client.get_projects(title=project_title)
if existing_projects:
self.ls_project = existing_projects[0]
self.project_id = self.ls_project.id
else:
self.ls_project = self.ls_client.create_project(
title=project_title, label_config=self.project_config
)
self.project_id = self.ls_project.id
self.parsed_label_config = self.ls_project.parsed_label_config
# Find the first TextArea tag
# "from_name", "to_name", "value" will be used to create predictions
self.from_name, self.to_name, self.value, self.input_type = (
None,
None,
None,
None,
)
for tag_name, tag_info in self.parsed_label_config.items():
if tag_info["type"] == "TextArea":
self.from_name = tag_name
self.to_name = tag_info["to_name"][0]
self.value = tag_info["inputs"][0]["value"]
self.input_type = tag_info["inputs"][0]["type"]
break
if not self.from_name:
error_message = (
f'Label Studio project "{self.project_name}" '
f"does not have a TextArea tag. "
f"Please add a TextArea tag to the project."
)
if self.mode == LabelStudioMode.PROMPT:
error_message += (
"\nHINT: go to project Settings -> "
"Labeling Interface -> Browse Templates"
' and select "Generative AI -> '
'Supervised Language Model Fine-tuning" template.'
)
else:
error_message += (
"\nHINT: go to project Settings -> "
"Labeling Interface -> Browse Templates"
" and check available templates under "
'"Generative AI" section.'
)
raise ValueError(error_message)
def add_prompts_generations(
self, run_id: str, generations: List[List[Generation]]
) -> None:
# Create tasks in Label Studio
tasks = []
prompts = self.payload[run_id]["prompts"]
model_version = (
self.payload[run_id]["kwargs"]
.get("invocation_params", {})
.get("model_name")
)
for prompt, generation in zip(prompts, generations):
tasks.append(
{
"data": {
self.value: prompt,
"run_id": run_id,
},
"predictions": [
{
"result": [
{
"from_name": self.from_name,
"to_name": self.to_name,
"type": "textarea",
"value": {"text": [g.text for g in generation]},
}
],
"model_version": model_version,
}
],
}
)
self.ls_project.import_tasks(tasks)
def on_llm_start(
self,
serialized: Dict[str, Any],
prompts: List[str],
**kwargs: Any,
) -> None:
"""Save the prompts in memory when an LLM starts."""
if self.input_type != "Text":
raise ValueError(
f'\nLabel Studio project "{self.project_name}" '
f"has an input type <{self.input_type}>. "
f'To make it work with the mode="chat", '
f"the input type should be <Text>.\n"
f"Read more here https://labelstud.io/tags/text"
)
run_id = str(kwargs["run_id"])
self.payload[run_id] = {"prompts": prompts, "kwargs": kwargs}
def _get_message_role(self, message: BaseMessage) -> str:
"""Get the role of the message."""
if isinstance(message, ChatMessage):
return message.role
else:
return message.__class__.__name__
def on_chat_model_start(
self,
serialized: Dict[str, Any],
messages: List[List[BaseMessage]],
*,
run_id: UUID,
parent_run_id: Optional[UUID] = None,
tags: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> Any:
"""Save the prompts in memory when an LLM starts."""
if self.input_type != "Paragraphs":
raise ValueError(
f'\nLabel Studio project "{self.project_name}" '
f"has an input type <{self.input_type}>. "
f'To make it work with the mode="chat", '
f"the input type should be <Paragraphs>.\n"
f"Read more here https://labelstud.io/tags/paragraphs"
)
prompts = []
for message_list in messages:
dialog = []
for message in message_list:
dialog.append(
{
"role": self._get_message_role(message),
"content": message.content,
}
)
prompts.append(dialog)
self.payload[str(run_id)] = {
"prompts": prompts,
"tags": tags,
"metadata": metadata,
"run_id": run_id,
"parent_run_id": parent_run_id,
"kwargs": kwargs,
}
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
"""Do nothing when a new token is generated."""
pass
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
"""Create a new Label Studio task for each prompt and generation."""
run_id = str(kwargs["run_id"])
# Submit results to Label Studio
self.add_prompts_generations(run_id, response.generations)
# Pop current run from `self.runs`
self.payload.pop(run_id)
def on_llm_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
"""Do nothing when LLM outputs an error."""
pass
def on_chain_start(
self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
) -> None:
pass
def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
pass
def on_chain_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
"""Do nothing when LLM chain outputs an error."""
pass
def on_tool_start(
self,
serialized: Dict[str, Any],
input_str: str,
**kwargs: Any,
) -> None:
"""Do nothing when tool starts."""
pass
def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:
"""Do nothing when agent takes a specific action."""
pass
def on_tool_end(
self,
output: str,
observation_prefix: Optional[str] = None,
llm_prefix: Optional[str] = None,
**kwargs: Any,
) -> None:
"""Do nothing when tool ends."""
pass
def on_tool_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
"""Do nothing when tool outputs an error."""
pass
def on_text(self, text: str, **kwargs: Any) -> None:
"""Do nothing"""
pass
def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None:
"""Do nothing"""
pass