mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
embeddings: nomic embed vision (#22482)
Thank you for contributing to LangChain! **Description:** Adds Langchain support for Nomic Embed Vision **Twitter handle:** nomic_ai,zach_nussbaum - [x] **Add tests and docs**: If you're adding a new integration, please include 1. a test for the integration, preferably unit tests that do not rely on network access, 2. an example notebook showing its use. It lives in `docs/docs/integrations` directory. - [ ] **Lint and test**: Run `make format`, `make lint` and `make test` from the root of the package(s) you've modified. See contribution guidelines for more: https://python.langchain.com/docs/contributing/ Additional guidelines: - Make sure optional dependencies are imported within a function. - Please do not add dependencies to pyproject.toml files (even optional ones) unless they are required for unit tests. - Most PRs should not touch more than one package. - Changes should be backwards compatible. - If you are adding something to community, do not re-import it in langchain. If no one reviews your PR within a few days, please @-mention one of baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17. --------- Co-authored-by: Lance Martin <122662504+rlancemartin@users.noreply.github.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
parent
3280a5b49b
commit
14f3014cce
497
cookbook/nomic_multimodal_rag.ipynb
Normal file
497
cookbook/nomic_multimodal_rag.ipynb
Normal file
@ -0,0 +1,497 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"id": "9fc3897d-176f-4729-8fd1-cfb4add53abd",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Nomic multi-modal RAG\n",
|
||||
"\n",
|
||||
"Many documents contain a mixture of content types, including text and images. \n",
|
||||
"\n",
|
||||
"Yet, information captured in images is lost in most RAG applications.\n",
|
||||
"\n",
|
||||
"With the emergence of multimodal LLMs, like [GPT-4V](https://openai.com/research/gpt-4v-system-card), it is worth considering how to utilize images in RAG:\n",
|
||||
"\n",
|
||||
"In this demo we\n",
|
||||
"\n",
|
||||
"* Use multimodal embeddings from Nomic Embed [Vision](https://huggingface.co/nomic-ai/nomic-embed-vision-v1.5) and [Text](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) to embed images and text\n",
|
||||
"* Retrieve both using similarity search\n",
|
||||
"* Pass raw images and text chunks to a multimodal LLM for answer synthesis \n",
|
||||
"\n",
|
||||
"## Signup\n",
|
||||
"\n",
|
||||
"Get your API token, then run:\n",
|
||||
"```\n",
|
||||
"! nomic login\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"Then run with your generated API token \n",
|
||||
"```\n",
|
||||
"! nomic login < token > \n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"## Packages\n",
|
||||
"\n",
|
||||
"For `unstructured`, you will also need `poppler` ([installation instructions](https://pdf2image.readthedocs.io/en/latest/installation.html)) and `tesseract` ([installation instructions](https://tesseract-ocr.github.io/tessdoc/Installation.html)) in your system."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "54926b9b-75c2-4cd4-8f14-b3882a0d370b",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"! nomic login token"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "febbc459-ebba-4c1a-a52b-fed7731593f8",
|
||||
"metadata": {
|
||||
"scrolled": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"! pip install -U langchain-nomic langchain_community tiktoken langchain-openai chromadb langchain # (newest versions required for multi-modal)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "acbdc603-39e2-4a5f-836c-2bbaecd46b0b",
|
||||
"metadata": {
|
||||
"scrolled": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# lock to 0.10.19 due to a persistent bug in more recent versions\n",
|
||||
"! pip install \"unstructured[all-docs]==0.10.19\" pillow pydantic lxml pillow matplotlib tiktoken"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "1e94b3fb-8e3e-4736-be0a-ad881626c7bd",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Data Loading\n",
|
||||
"\n",
|
||||
"### Partition PDF text and images\n",
|
||||
" \n",
|
||||
"Let's look at an example pdfs containing interesting images.\n",
|
||||
"\n",
|
||||
"1/ Art from the J Paul Getty museum:\n",
|
||||
"\n",
|
||||
" * Here is a [zip file](https://drive.google.com/file/d/18kRKbq2dqAhhJ3DfZRnYcTBEUfYxe1YR/view?usp=sharing) with the PDF and the already extracted images. \n",
|
||||
"* https://www.getty.edu/publications/resources/virtuallibrary/0892360224.pdf\n",
|
||||
"\n",
|
||||
"2/ Famous photographs from library of congress:\n",
|
||||
"\n",
|
||||
"* https://www.loc.gov/lcm/pdf/LCM_2020_1112.pdf\n",
|
||||
"* We'll use this as an example below\n",
|
||||
"\n",
|
||||
"We can use `partition_pdf` below from [Unstructured](https://unstructured-io.github.io/unstructured/introduction.html#key-concepts) to extract text and images.\n",
|
||||
"\n",
|
||||
"To supply this to extract the images:\n",
|
||||
"```\n",
|
||||
"extract_images_in_pdf=True\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"If using this zip file, then you can simply process the text only with:\n",
|
||||
"```\n",
|
||||
"extract_images_in_pdf=False\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "9646b524-71a7-4b2a-bdc8-0b81f77e968f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Folder with pdf and extracted images\n",
|
||||
"from pathlib import Path\n",
|
||||
"\n",
|
||||
"# replace with actual path to images\n",
|
||||
"path = Path(\"../art\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "77f096ab-a933-41d0-8f4e-1efc83998fc3",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"path.resolve()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "bc4839c0-8773-4a07-ba59-5364501269b2",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Extract images, tables, and chunk text\n",
|
||||
"from unstructured.partition.pdf import partition_pdf\n",
|
||||
"\n",
|
||||
"raw_pdf_elements = partition_pdf(\n",
|
||||
" filename=str(path.resolve()) + \"/getty.pdf\",\n",
|
||||
" extract_images_in_pdf=False,\n",
|
||||
" infer_table_structure=True,\n",
|
||||
" chunking_strategy=\"by_title\",\n",
|
||||
" max_characters=4000,\n",
|
||||
" new_after_n_chars=3800,\n",
|
||||
" combine_text_under_n_chars=2000,\n",
|
||||
" image_output_dir_path=path,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "969545ad",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Categorize text elements by type\n",
|
||||
"tables = []\n",
|
||||
"texts = []\n",
|
||||
"for element in raw_pdf_elements:\n",
|
||||
" if \"unstructured.documents.elements.Table\" in str(type(element)):\n",
|
||||
" tables.append(str(element))\n",
|
||||
" elif \"unstructured.documents.elements.CompositeElement\" in str(type(element)):\n",
|
||||
" texts.append(str(element))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "5d8e6349-1547-4cbf-9c6f-491d8610ec10",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Multi-modal embeddings with our document\n",
|
||||
"\n",
|
||||
"We will use [nomic-embed-vision-v1.5](https://huggingface.co/nomic-ai/nomic-embed-vision-v1.5) embeddings. This model is aligned \n",
|
||||
"to [nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) allowing for multimodal semantic search and Multimodal RAG!"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "4bc15842-cb95-4f84-9eb5-656b0282a800",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"import uuid\n",
|
||||
"\n",
|
||||
"import chromadb\n",
|
||||
"import numpy as np\n",
|
||||
"from langchain_community.vectorstores import Chroma\n",
|
||||
"from langchain_nomic import NomicEmbeddings\n",
|
||||
"from PIL import Image as _PILImage\n",
|
||||
"\n",
|
||||
"# Create chroma\n",
|
||||
"text_vectorstore = Chroma(\n",
|
||||
" collection_name=\"mm_rag_clip_photos_text\",\n",
|
||||
" embedding_function=NomicEmbeddings(\n",
|
||||
" vision_model=\"nomic-embed-vision-v1.5\", model=\"nomic-embed-text-v1.5\"\n",
|
||||
" ),\n",
|
||||
")\n",
|
||||
"image_vectorstore = Chroma(\n",
|
||||
" collection_name=\"mm_rag_clip_photos_image\",\n",
|
||||
" embedding_function=NomicEmbeddings(\n",
|
||||
" vision_model=\"nomic-embed-vision-v1.5\", model=\"nomic-embed-text-v1.5\"\n",
|
||||
" ),\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Get image URIs with .jpg extension only\n",
|
||||
"image_uris = sorted(\n",
|
||||
" [\n",
|
||||
" os.path.join(path, image_name)\n",
|
||||
" for image_name in os.listdir(path)\n",
|
||||
" if image_name.endswith(\".jpg\")\n",
|
||||
" ]\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Add images\n",
|
||||
"image_vectorstore.add_images(uris=image_uris)\n",
|
||||
"\n",
|
||||
"# Add documents\n",
|
||||
"text_vectorstore.add_texts(texts=texts)\n",
|
||||
"\n",
|
||||
"# Make retriever\n",
|
||||
"image_retriever = image_vectorstore.as_retriever()\n",
|
||||
"text_retriever = text_vectorstore.as_retriever()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "02a186d0-27e0-4820-8092-63b5349dd25d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## RAG\n",
|
||||
"\n",
|
||||
"`vectorstore.add_images` will store / retrieve images as base64 encoded strings.\n",
|
||||
"\n",
|
||||
"These can be passed to [GPT-4V](https://platform.openai.com/docs/guides/vision)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "344f56a8-0dc3-433e-851c-3f7600c7a72b",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import base64\n",
|
||||
"import io\n",
|
||||
"from io import BytesIO\n",
|
||||
"\n",
|
||||
"import numpy as np\n",
|
||||
"from PIL import Image\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def resize_base64_image(base64_string, size=(128, 128)):\n",
|
||||
" \"\"\"\n",
|
||||
" Resize an image encoded as a Base64 string.\n",
|
||||
"\n",
|
||||
" Args:\n",
|
||||
" base64_string (str): Base64 string of the original image.\n",
|
||||
" size (tuple): Desired size of the image as (width, height).\n",
|
||||
"\n",
|
||||
" Returns:\n",
|
||||
" str: Base64 string of the resized image.\n",
|
||||
" \"\"\"\n",
|
||||
" # Decode the Base64 string\n",
|
||||
" img_data = base64.b64decode(base64_string)\n",
|
||||
" img = Image.open(io.BytesIO(img_data))\n",
|
||||
"\n",
|
||||
" # Resize the image\n",
|
||||
" resized_img = img.resize(size, Image.LANCZOS)\n",
|
||||
"\n",
|
||||
" # Save the resized image to a bytes buffer\n",
|
||||
" buffered = io.BytesIO()\n",
|
||||
" resized_img.save(buffered, format=img.format)\n",
|
||||
"\n",
|
||||
" # Encode the resized image to Base64\n",
|
||||
" return base64.b64encode(buffered.getvalue()).decode(\"utf-8\")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def is_base64(s):\n",
|
||||
" \"\"\"Check if a string is Base64 encoded\"\"\"\n",
|
||||
" try:\n",
|
||||
" return base64.b64encode(base64.b64decode(s)) == s.encode()\n",
|
||||
" except Exception:\n",
|
||||
" return False\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def split_image_text_types(docs):\n",
|
||||
" \"\"\"Split numpy array images and texts\"\"\"\n",
|
||||
" images = []\n",
|
||||
" text = []\n",
|
||||
" for doc in docs:\n",
|
||||
" doc = doc.page_content # Extract Document contents\n",
|
||||
" if is_base64(doc):\n",
|
||||
" # Resize image to avoid OAI server error\n",
|
||||
" images.append(\n",
|
||||
" resize_base64_image(doc, size=(250, 250))\n",
|
||||
" ) # base64 encoded str\n",
|
||||
" else:\n",
|
||||
" text.append(doc)\n",
|
||||
" return {\"images\": images, \"texts\": text}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "23a2c1d8-fea6-4152-b184-3172dd46c735",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Currently, we format the inputs using a `RunnableLambda` while we add image support to `ChatPromptTemplates`.\n",
|
||||
"\n",
|
||||
"Our runnable follows the classic RAG flow - \n",
|
||||
"\n",
|
||||
"* We first compute the context (both \"texts\" and \"images\" in this case) and the question (just a RunnablePassthrough here) \n",
|
||||
"* Then we pass this into our prompt template, which is a custom function that formats the message for the gpt-4-vision-preview model. \n",
|
||||
"* And finally we parse the output as a string."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "5d8919dc-c238-4746-86ba-45d940a7d260",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"os.environ[\"OPENAI_API_KEY\"] = \"\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "4c93fab3-74c4-4f1d-958a-0bc4cdd0797e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from operator import itemgetter\n",
|
||||
"\n",
|
||||
"from langchain_core.messages import HumanMessage, SystemMessage\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
|
||||
"from langchain_openai import ChatOpenAI\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def prompt_func(data_dict):\n",
|
||||
" # Joining the context texts into a single string\n",
|
||||
" formatted_texts = \"\\n\".join(data_dict[\"text_context\"][\"texts\"])\n",
|
||||
" messages = []\n",
|
||||
"\n",
|
||||
" # Adding image(s) to the messages if present\n",
|
||||
" if data_dict[\"image_context\"][\"images\"]:\n",
|
||||
" image_message = {\n",
|
||||
" \"type\": \"image_url\",\n",
|
||||
" \"image_url\": {\n",
|
||||
" \"url\": f\"data:image/jpeg;base64,{data_dict['image_context']['images'][0]}\"\n",
|
||||
" },\n",
|
||||
" }\n",
|
||||
" messages.append(image_message)\n",
|
||||
"\n",
|
||||
" # Adding the text message for analysis\n",
|
||||
" text_message = {\n",
|
||||
" \"type\": \"text\",\n",
|
||||
" \"text\": (\n",
|
||||
" \"As an expert art critic and historian, your task is to analyze and interpret images, \"\n",
|
||||
" \"considering their historical and cultural significance. Alongside the images, you will be \"\n",
|
||||
" \"provided with related text to offer context. Both will be retrieved from a vectorstore based \"\n",
|
||||
" \"on user-input keywords. Please use your extensive knowledge and analytical skills to provide a \"\n",
|
||||
" \"comprehensive summary that includes:\\n\"\n",
|
||||
" \"- A detailed description of the visual elements in the image.\\n\"\n",
|
||||
" \"- The historical and cultural context of the image.\\n\"\n",
|
||||
" \"- An interpretation of the image's symbolism and meaning.\\n\"\n",
|
||||
" \"- Connections between the image and the related text.\\n\\n\"\n",
|
||||
" f\"User-provided keywords: {data_dict['question']}\\n\\n\"\n",
|
||||
" \"Text and / or tables:\\n\"\n",
|
||||
" f\"{formatted_texts}\"\n",
|
||||
" ),\n",
|
||||
" }\n",
|
||||
" messages.append(text_message)\n",
|
||||
"\n",
|
||||
" return [HumanMessage(content=messages)]\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"model = ChatOpenAI(temperature=0, model=\"gpt-4-vision-preview\", max_tokens=1024)\n",
|
||||
"\n",
|
||||
"# RAG pipeline\n",
|
||||
"chain = (\n",
|
||||
" {\n",
|
||||
" \"text_context\": text_retriever | RunnableLambda(split_image_text_types),\n",
|
||||
" \"image_context\": image_retriever | RunnableLambda(split_image_text_types),\n",
|
||||
" \"question\": RunnablePassthrough(),\n",
|
||||
" }\n",
|
||||
" | RunnableLambda(prompt_func)\n",
|
||||
" | model\n",
|
||||
" | StrOutputParser()\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "1566096d-97c2-4ddc-ba4a-6ef88c525e4e",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Test retrieval and run RAG"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "90121e56-674b-473b-871d-6e4753fd0c45",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from IPython.display import HTML, display\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def plt_img_base64(img_base64):\n",
|
||||
" # Create an HTML img tag with the base64 string as the source\n",
|
||||
" image_html = f'<img src=\"data:image/jpeg;base64,{img_base64}\" />'\n",
|
||||
"\n",
|
||||
" # Display the image by rendering the HTML\n",
|
||||
" display(HTML(image_html))\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"docs = text_retriever.invoke(\"Women with children\", k=5)\n",
|
||||
"for doc in docs:\n",
|
||||
" if is_base64(doc.page_content):\n",
|
||||
" plt_img_base64(doc.page_content)\n",
|
||||
" else:\n",
|
||||
" print(doc.page_content)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "44eaa532-f035-4c04-b578-02339d42554c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"docs = image_retriever.invoke(\"Women with children\", k=5)\n",
|
||||
"for doc in docs:\n",
|
||||
" if is_base64(doc.page_content):\n",
|
||||
" plt_img_base64(doc.page_content)\n",
|
||||
" else:\n",
|
||||
" print(doc.page_content)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "69fb15fd-76fc-49b4-806d-c4db2990027d",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"chain.invoke(\"Women with children\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "227f08b8-e732-4089-b65c-6eb6f9e48f15",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"We can see the images retrieved in the LangSmith trace:\n",
|
||||
"\n",
|
||||
"LangSmith [trace](https://smith.langchain.com/public/69c558a5-49dc-4c60-a49b-3adbb70f74c5/r/e872c2c8-528c-468f-aefd-8b5cd730a673)."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
@ -515,7 +515,8 @@ def log_results(arxiv_id2type2key2urls):
|
||||
def generate_arxiv_references_page(file_name: Path, papers: list[ArxivPaper]) -> None:
|
||||
with open(file_name, "w") as f:
|
||||
# Write the table headers
|
||||
f.write("""# arXiv
|
||||
f.write(
|
||||
"""# arXiv
|
||||
|
||||
LangChain implements the latest research in the field of Natural Language Processing.
|
||||
This page contains `arXiv` papers referenced in the LangChain Documentation, API Reference,
|
||||
@ -525,7 +526,8 @@ This page contains `arXiv` papers referenced in the LangChain Documentation, API
|
||||
|
||||
| arXiv id / Title | Authors | Published date 🔻 | LangChain Documentation|
|
||||
|------------------|---------|-------------------|------------------------|
|
||||
""")
|
||||
"""
|
||||
)
|
||||
for paper in papers:
|
||||
refs = []
|
||||
if paper.referencing_doc2url:
|
||||
@ -595,7 +597,8 @@ This page contains `arXiv` papers referenced in the LangChain Documentation, API
|
||||
if el
|
||||
]
|
||||
)
|
||||
f.write(f"""
|
||||
f.write(
|
||||
f"""
|
||||
## {paper.title}
|
||||
|
||||
- **arXiv id:** {paper.arxiv_id}
|
||||
@ -608,7 +611,8 @@ This page contains `arXiv` papers referenced in the LangChain Documentation, API
|
||||
{refs}
|
||||
|
||||
**Abstract:** {paper.abstract}
|
||||
""")
|
||||
"""
|
||||
)
|
||||
|
||||
logger.warning(f"Created the {file_name} file with {len(papers)} arXiv references.")
|
||||
|
||||
|
@ -1,5 +1,3 @@
|
||||
from langchain_nomic.embeddings import NomicEmbeddings
|
||||
|
||||
__all__ = [
|
||||
"NomicEmbeddings",
|
||||
]
|
||||
__all__ = ["NomicEmbeddings"]
|
||||
|
@ -22,6 +22,7 @@ class NomicEmbeddings(Embeddings):
|
||||
self,
|
||||
*,
|
||||
model: str,
|
||||
nomic_api_key: Optional[str] = ...,
|
||||
dimensionality: Optional[int] = ...,
|
||||
inference_mode: Literal["remote"] = ...,
|
||||
):
|
||||
@ -32,6 +33,7 @@ class NomicEmbeddings(Embeddings):
|
||||
self,
|
||||
*,
|
||||
model: str,
|
||||
nomic_api_key: Optional[str] = ...,
|
||||
dimensionality: Optional[int] = ...,
|
||||
inference_mode: Literal["local", "dynamic"],
|
||||
device: Optional[str] = ...,
|
||||
@ -43,6 +45,7 @@ class NomicEmbeddings(Embeddings):
|
||||
self,
|
||||
*,
|
||||
model: str,
|
||||
nomic_api_key: Optional[str] = ...,
|
||||
dimensionality: Optional[int] = ...,
|
||||
inference_mode: str,
|
||||
device: Optional[str] = ...,
|
||||
@ -57,6 +60,7 @@ class NomicEmbeddings(Embeddings):
|
||||
dimensionality: Optional[int] = None,
|
||||
inference_mode: str = "remote",
|
||||
device: Optional[str] = None,
|
||||
vision_model: Optional[str] = None,
|
||||
):
|
||||
"""Initialize NomicEmbeddings model.
|
||||
|
||||
@ -80,6 +84,7 @@ class NomicEmbeddings(Embeddings):
|
||||
self.dimensionality = dimensionality
|
||||
self.inference_mode = inference_mode
|
||||
self.device = device
|
||||
self.vision_model = vision_model
|
||||
|
||||
def embed(self, texts: List[str], *, task_type: str) -> List[List[float]]:
|
||||
"""Embed texts.
|
||||
@ -121,3 +126,9 @@ class NomicEmbeddings(Embeddings):
|
||||
texts=[text],
|
||||
task_type="search_query",
|
||||
)[0]
|
||||
|
||||
def embed_image(self, uris: List[str]) -> List[List[float]]:
|
||||
return embed.image(
|
||||
images=uris,
|
||||
model=self.vision_model,
|
||||
)["embeddings"]
|
||||
|
14
libs/partners/nomic/poetry.lock
generated
14
libs/partners/nomic/poetry.lock
generated
@ -1,4 +1,4 @@
|
||||
# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand.
|
||||
# This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand.
|
||||
|
||||
[[package]]
|
||||
name = "annotated-types"
|
||||
@ -276,7 +276,7 @@ files = [
|
||||
|
||||
[[package]]
|
||||
name = "langchain-core"
|
||||
version = "0.2.0rc1"
|
||||
version = "0.2.3"
|
||||
description = "Building applications with LLMs through composability"
|
||||
optional = false
|
||||
python-versions = ">=3.8.1,<4.0"
|
||||
@ -285,7 +285,7 @@ develop = true
|
||||
|
||||
[package.dependencies]
|
||||
jsonpatch = "^1.33"
|
||||
langsmith = "^0.1.0"
|
||||
langsmith = "^0.1.65"
|
||||
packaging = "^23.2"
|
||||
pydantic = ">=1,<3"
|
||||
PyYAML = ">=5.3"
|
||||
@ -300,13 +300,13 @@ url = "../../core"
|
||||
|
||||
[[package]]
|
||||
name = "langsmith"
|
||||
version = "0.1.58"
|
||||
version = "0.1.65"
|
||||
description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform."
|
||||
optional = false
|
||||
python-versions = "<4.0,>=3.8.1"
|
||||
files = [
|
||||
{file = "langsmith-0.1.58-py3-none-any.whl", hash = "sha256:1148cc836ec99d1b2f37cd2fa3014fcac213bb6bad798a2b21bb9111c18c9768"},
|
||||
{file = "langsmith-0.1.58.tar.gz", hash = "sha256:a5060933c1fb3006b498ec849677993329d7e6138bdc2ec044068ab806e09c39"},
|
||||
{file = "langsmith-0.1.65-py3-none-any.whl", hash = "sha256:ab4487029240e69cca30da1065f1e9138e5a7ca2bbe8c697f0bd7d5839f71cf7"},
|
||||
{file = "langsmith-0.1.65.tar.gz", hash = "sha256:d3c2eb2391478bd79989f02652cf66e29a7959d677614b6993a47cef43f7f43b"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@ -1309,4 +1309,4 @@ dev = ["black (>=19.3b0)", "pytest (>=4.6.2)"]
|
||||
[metadata]
|
||||
lock-version = "2.0"
|
||||
python-versions = ">=3.8.1,<4.0"
|
||||
content-hash = "369d2f7218d797a01a533380de9cce01037963f628dce10bc9927eac014edeeb"
|
||||
content-hash = "bf51336a3b4035385ddd68946aa5bbe699f4b805dd0503ba1dd1454a69248616"
|
||||
|
@ -14,6 +14,7 @@ license = "MIT"
|
||||
python = ">=3.8.1,<4.0"
|
||||
langchain-core = ">=0.1.46,<0.3"
|
||||
nomic = "^3.0.29"
|
||||
pillow = "^10.3.0"
|
||||
|
||||
[tool.poetry.group.test]
|
||||
optional = true
|
||||
|
@ -7,11 +7,11 @@ With the release of open source, multi-modal LLMs it's possible to build this ki
|
||||
|
||||
This template demonstrates how to perform private visual search and question-answering over a collection of your photos.
|
||||
|
||||
It uses OpenCLIP embeddings to embed all of the photos and stores them in Chroma.
|
||||
It uses [`nomic-embed-vision-v1`](https://huggingface.co/nomic-ai/nomic-embed-vision-v1) multi-modal embeddings to embed the images and `Ollama` for question-answering.
|
||||
|
||||
Given a question, relevant photos are retrieved and passed to an open source multi-modal LLM of your choice for answer synthesis.
|
||||
|
||||
![Diagram illustrating the visual search process with OpenCLIP embeddings and multi-modal LLM for question-answering, featuring example food pictures and a matcha soft serve answer trace.](https://github.com/langchain-ai/langchain/assets/122662504/da543b21-052c-4c43-939e-d4f882a45d75 "Visual Search Process Diagram")
|
||||
![Diagram illustrating the visual search process with nomic-embed-vision-v1 embeddings and multi-modal LLM for question-answering, featuring example food pictures and a matcha soft serve answer trace.](https://github.com/langchain-ai/langchain/assets/122662504/da543b21-052c-4c43-939e-d4f882a45d75 "Visual Search Process Diagram")
|
||||
|
||||
## Input
|
||||
|
||||
@ -34,22 +34,23 @@ python ingest.py
|
||||
|
||||
## Storage
|
||||
|
||||
This template will use [OpenCLIP](https://github.com/mlfoundations/open_clip) multi-modal embeddings to embed the images.
|
||||
|
||||
You can select different embedding model options (see results [here](https://github.com/mlfoundations/open_clip/blob/main/docs/openclip_results.csv)).
|
||||
This template will use [nomic-embed-vision-v1](https://huggingface.co/nomic-ai/nomic-embed-vision-v1) multi-modal embeddings to embed the images.
|
||||
|
||||
The first time you run the app, it will automatically download the multimodal embedding model.
|
||||
|
||||
By default, LangChain will use an embedding model with moderate performance but lower memory requirments, `ViT-H-14`.
|
||||
|
||||
You can choose alternative `OpenCLIPEmbeddings` models in `rag_chroma_multi_modal/ingest.py`:
|
||||
You can choose alternative models in `rag_chroma_multi_modal/ingest.py`, such as `OpenCLIPEmbeddings`.
|
||||
```
|
||||
langchain_experimental.open_clip import OpenCLIPEmbeddings
|
||||
|
||||
embedding_function=OpenCLIPEmbeddings(
|
||||
model_name="ViT-H-14", checkpoint="laion2b_s32b_b79k"
|
||||
)
|
||||
|
||||
vectorstore_mmembd = Chroma(
|
||||
collection_name="multi-modal-rag",
|
||||
persist_directory=str(re_vectorstore_path),
|
||||
embedding_function=OpenCLIPEmbeddings(
|
||||
model_name="ViT-H-14", checkpoint="laion2b_s32b_b79k"
|
||||
),
|
||||
embedding_function=embedding_function
|
||||
)
|
||||
```
|
||||
|
||||
|
@ -2,7 +2,7 @@ import os
|
||||
from pathlib import Path
|
||||
|
||||
from langchain_community.vectorstores import Chroma
|
||||
from langchain_experimental.open_clip import OpenCLIPEmbeddings
|
||||
from langchain_nomic import NomicMultimodalEmbeddings
|
||||
|
||||
# Load images
|
||||
img_dump_path = Path(__file__).parent / "docs/"
|
||||
@ -21,7 +21,9 @@ re_vectorstore_path = vectorstore.relative_to(Path.cwd())
|
||||
|
||||
# Load embedding function
|
||||
print("Loading embedding function")
|
||||
embedding = OpenCLIPEmbeddings(model_name="ViT-H-14", checkpoint="laion2b_s32b_b79k")
|
||||
embedding = NomicMultimodalEmbeddings(
|
||||
vision_model="nomic-embed-vision-v1", text_model="nomic-embed-text-v1"
|
||||
)
|
||||
|
||||
# Create chroma
|
||||
vectorstore_mmembd = Chroma(
|
||||
|
@ -9,7 +9,7 @@ from langchain_core.messages import HumanMessage
|
||||
from langchain_core.output_parsers import StrOutputParser
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
from langchain_core.runnables import RunnableLambda, RunnablePassthrough
|
||||
from langchain_experimental.open_clip import OpenCLIPEmbeddings
|
||||
from langchain_nomic import NomicMultimodalEmbeddings
|
||||
from PIL import Image
|
||||
|
||||
|
||||
@ -102,8 +102,8 @@ def multi_modal_rag_chain(retriever):
|
||||
vectorstore_mmembd = Chroma(
|
||||
collection_name="multi-modal-rag",
|
||||
persist_directory=str(Path(__file__).parent.parent / "chroma_db_multi_modal"),
|
||||
embedding_function=OpenCLIPEmbeddings(
|
||||
model_name="ViT-H-14", checkpoint="laion2b_s32b_b79k"
|
||||
embedding_function=NomicMultimodalEmbeddings(
|
||||
vision_model="nomic-embed-vision-v1", text_model="nomic-embed-text-v1"
|
||||
),
|
||||
)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user