mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
add filter to sklearn vector store functions (#8113)
# What - This is to add filter option to sklearn vectore store functions <!-- Thank you for contributing to LangChain! Replace this comment with: - Description: Add filter to sklearn vectore store functions. - Issue: None - Dependencies: None - Tag maintainer: @rlancemartin, @eyurtsev - Twitter handle: @MlopsJ If you're adding a new integration, please include: 1. a test for the integration, preferably unit tests that do not rely on network access, 2. an example notebook showing its use. Maintainer responsibilities: - General / Misc / if you don't know who to tag: @baskaryan - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev - Models / Prompts: @hwchase17, @baskaryan - Memory: @hwchase17 - Agents / Tools / Toolkits: @hinthornw - Tracing / Callbacks: @agola11 - Async: @agola11 If no one reviews your PR within a few days, feel free to @-mention the same people again. See contribution guidelines for more information on how to write/run tests, lint, etc: https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md --> --------- Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
This commit is contained in:
parent
2759e2d857
commit
0f0ccfe7f6
@ -13,7 +13,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@ -56,7 +56,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@ -65,7 +65,7 @@
|
||||
"from langchain.vectorstores import SKLearnVectorStore\n",
|
||||
"from langchain.document_loaders import TextLoader\n",
|
||||
"\n",
|
||||
"loader = TextLoader(\"../../../state_of_the_union.txt\")\n",
|
||||
"loader = TextLoader(\"../../../extras/modules/state_of_the_union.txt\")\n",
|
||||
"documents = loader.load()\n",
|
||||
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
|
||||
"docs = text_splitter.split_documents(documents)\n",
|
||||
@ -81,7 +81,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@ -100,6 +100,7 @@
|
||||
],
|
||||
"source": [
|
||||
"import tempfile\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"persist_path = os.path.join(tempfile.gettempdir(), \"union.parquet\")\n",
|
||||
"\n",
|
||||
@ -184,6 +185,32 @@
|
||||
"print(docs[0].page_content)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Filter"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"1\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"_filter = {\"id\": \"c53e6eac-0070-403c-8435-a9e528539610\"}\n",
|
||||
"docs = vector_store.similarity_search(query, filter=_filter)\n",
|
||||
"print(len(docs))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
@ -217,7 +244,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.6"
|
||||
"version": "3.10.1"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
@ -233,33 +233,66 @@ class SKLearnVectorStore(VectorStore):
|
||||
return list(zip(neigh_idxs[0], neigh_dists[0]))
|
||||
|
||||
def similarity_search_with_score(
|
||||
self, query: str, *, k: int = DEFAULT_K, **kwargs: Any
|
||||
self,
|
||||
query: str,
|
||||
*,
|
||||
k: int = DEFAULT_K,
|
||||
fetch_k: int = DEFAULT_FETCH_K,
|
||||
filter: Optional[Dict[str, Any]] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[Tuple[Document, float]]:
|
||||
query_embedding = self._embedding_function.embed_query(query)
|
||||
indices_dists = self._similarity_index_search_with_score(
|
||||
query_embedding, k=k, **kwargs
|
||||
query_embedding, k=fetch_k, **kwargs
|
||||
)
|
||||
return [
|
||||
(
|
||||
|
||||
docs: List[Tuple[Document, float]] = []
|
||||
for idx, dist in indices_dists:
|
||||
doc = (
|
||||
Document(
|
||||
page_content=self._texts[idx],
|
||||
metadata={"id": self._ids[idx], **self._metadatas[idx]},
|
||||
),
|
||||
dist,
|
||||
)
|
||||
for idx, dist in indices_dists
|
||||
]
|
||||
|
||||
if filter is None:
|
||||
docs.append(doc)
|
||||
else:
|
||||
filter = {
|
||||
key: [value] if not isinstance(value, list) else value
|
||||
for key, value in filter.items()
|
||||
}
|
||||
if all(
|
||||
doc[0].metadata.get(key) in value for key, value in filter.items()
|
||||
):
|
||||
docs.append(doc)
|
||||
return docs[:k]
|
||||
|
||||
def similarity_search(
|
||||
self, query: str, k: int = DEFAULT_K, **kwargs: Any
|
||||
self,
|
||||
query: str,
|
||||
k: int = DEFAULT_K,
|
||||
fetch_k: int = DEFAULT_FETCH_K,
|
||||
filter: Optional[Dict[str, Any]] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[Document]:
|
||||
docs_scores = self.similarity_search_with_score(query, k=k, **kwargs)
|
||||
docs_scores = self.similarity_search_with_score(
|
||||
query, k=k, fetch_k=fetch_k, filter=filter, **kwargs
|
||||
)
|
||||
return [doc for doc, _ in docs_scores]
|
||||
|
||||
def _similarity_search_with_relevance_scores(
|
||||
self, query: str, k: int = DEFAULT_K, **kwargs: Any
|
||||
self,
|
||||
query: str,
|
||||
k: int = DEFAULT_K,
|
||||
fetch_k: int = DEFAULT_FETCH_K,
|
||||
filter: Optional[Dict[str, Any]] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[Tuple[Document, float]]:
|
||||
docs_dists = self.similarity_search_with_score(query, k=k, **kwargs)
|
||||
docs_dists = self.similarity_search_with_score(
|
||||
query, k=k, fetch_k=fetch_k, filter=filter, **kwargs
|
||||
)
|
||||
docs, dists = zip(*docs_dists)
|
||||
scores = [1 / math.exp(dist) for dist in dists]
|
||||
return list(zip(list(docs), scores))
|
||||
@ -270,6 +303,7 @@ class SKLearnVectorStore(VectorStore):
|
||||
k: int = DEFAULT_K,
|
||||
fetch_k: int = DEFAULT_FETCH_K,
|
||||
lambda_mult: float = 0.5,
|
||||
filter: Optional[Dict[str, Any]] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[Document]:
|
||||
"""Return docs selected using the maximal marginal relevance.
|
||||
@ -283,6 +317,7 @@ class SKLearnVectorStore(VectorStore):
|
||||
of diversity among the results with 0 corresponding
|
||||
to maximum diversity and 1 to minimum diversity.
|
||||
Defaults to 0.5.
|
||||
filter: (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
||||
Returns:
|
||||
List of Documents selected by maximal marginal relevance.
|
||||
"""
|
||||
@ -294,17 +329,28 @@ class SKLearnVectorStore(VectorStore):
|
||||
mmr_selected = maximal_marginal_relevance(
|
||||
self._np.array(embedding, dtype=self._np.float32),
|
||||
result_embeddings,
|
||||
k=k,
|
||||
k=fetch_k,
|
||||
lambda_mult=lambda_mult,
|
||||
)
|
||||
mmr_indices = [indices[i] for i in mmr_selected]
|
||||
return [
|
||||
Document(
|
||||
|
||||
docs = []
|
||||
for idx in mmr_indices:
|
||||
doc = Document(
|
||||
page_content=self._texts[idx],
|
||||
metadata={"id": self._ids[idx], **self._metadatas[idx]},
|
||||
)
|
||||
for idx in mmr_indices
|
||||
]
|
||||
if filter is None:
|
||||
docs.append(doc)
|
||||
else:
|
||||
filter = {
|
||||
key: [value] if not isinstance(value, list) else value
|
||||
for key, value in filter.items()
|
||||
}
|
||||
if all(doc.metadata.get(key) in value for key, value in filter.items()):
|
||||
docs.append(doc)
|
||||
|
||||
return docs[:k]
|
||||
|
||||
def max_marginal_relevance_search(
|
||||
self,
|
||||
@ -312,6 +358,7 @@ class SKLearnVectorStore(VectorStore):
|
||||
k: int = DEFAULT_K,
|
||||
fetch_k: int = DEFAULT_FETCH_K,
|
||||
lambda_mult: float = 0.5,
|
||||
filter: Optional[Dict[str, Any]] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[Document]:
|
||||
"""Return docs selected using the maximal marginal relevance.
|
||||
@ -325,6 +372,7 @@ class SKLearnVectorStore(VectorStore):
|
||||
of diversity among the results with 0 corresponding
|
||||
to maximum diversity and 1 to minimum diversity.
|
||||
Defaults to 0.5.
|
||||
filter: (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
||||
Returns:
|
||||
List of Documents selected by maximal marginal relevance.
|
||||
"""
|
||||
@ -335,7 +383,7 @@ class SKLearnVectorStore(VectorStore):
|
||||
|
||||
embedding = self._embedding_function.embed_query(query)
|
||||
docs = self.max_marginal_relevance_search_by_vector(
|
||||
embedding, k, fetch_k, lambda_mul=lambda_mult
|
||||
embedding, k, fetch_k, lambda_mul=lambda_mult, filter=filter, **kwargs
|
||||
)
|
||||
return docs
|
||||
|
||||
|
@ -12,7 +12,7 @@ def test_sklearn() -> None:
|
||||
"""Test end to end construction and search."""
|
||||
texts = ["foo", "bar", "baz"]
|
||||
docsearch = SKLearnVectorStore.from_texts(texts, FakeEmbeddings())
|
||||
output = docsearch.similarity_search("foo", k=1)
|
||||
output = docsearch.similarity_search("foo", k=1, fetch_k=3)
|
||||
assert len(output) == 1
|
||||
assert output[0].page_content == "foo"
|
||||
|
||||
@ -27,10 +27,24 @@ def test_sklearn_with_metadatas() -> None:
|
||||
FakeEmbeddings(),
|
||||
metadatas=metadatas,
|
||||
)
|
||||
output = docsearch.similarity_search("foo", k=1)
|
||||
output = docsearch.similarity_search("foo", k=1, fetch_k=3)
|
||||
assert output[0].metadata["page"] == "0"
|
||||
|
||||
|
||||
@pytest.mark.requires("numpy", "sklearn")
|
||||
def test_sklearn_with_metadatas_and_filter() -> None:
|
||||
"""Test end to end construction and search."""
|
||||
texts = ["foo", "foo", "bar", "baz"]
|
||||
metadatas = [{"page": str(i)} for i in range(len(texts))]
|
||||
docsearch = SKLearnVectorStore.from_texts(
|
||||
texts,
|
||||
FakeEmbeddings(),
|
||||
metadatas=metadatas,
|
||||
)
|
||||
output = docsearch.similarity_search("foo", k=1, fetch_k=4, filter={"page": "1"})
|
||||
assert output[0].metadata["page"] == "1"
|
||||
|
||||
|
||||
@pytest.mark.requires("numpy", "sklearn")
|
||||
def test_sklearn_with_metadatas_with_scores() -> None:
|
||||
"""Test end to end construction and scored search."""
|
||||
@ -41,7 +55,7 @@ def test_sklearn_with_metadatas_with_scores() -> None:
|
||||
FakeEmbeddings(),
|
||||
metadatas=metadatas,
|
||||
)
|
||||
output = docsearch.similarity_search_with_relevance_scores("foo", k=1)
|
||||
output = docsearch.similarity_search_with_relevance_scores("foo", k=1, fetch_k=3)
|
||||
assert len(output) == 1
|
||||
doc, score = output[0]
|
||||
assert doc.page_content == "foo"
|
||||
@ -61,7 +75,7 @@ def test_sklearn_with_persistence(tmpdir: Path) -> None:
|
||||
serializer="json",
|
||||
)
|
||||
|
||||
output = docsearch.similarity_search("foo", k=1)
|
||||
output = docsearch.similarity_search("foo", k=1, fetch_k=3)
|
||||
assert len(output) == 1
|
||||
assert output[0].page_content == "foo"
|
||||
|
||||
@ -71,7 +85,7 @@ def test_sklearn_with_persistence(tmpdir: Path) -> None:
|
||||
docsearch = SKLearnVectorStore(
|
||||
FakeEmbeddings(), persist_path=str(persist_path), serializer="json"
|
||||
)
|
||||
output = docsearch.similarity_search("foo", k=1)
|
||||
output = docsearch.similarity_search("foo", k=1, fetch_k=3)
|
||||
assert len(output) == 1
|
||||
assert output[0].page_content == "foo"
|
||||
|
||||
@ -98,3 +112,19 @@ def test_sklearn_mmr_by_vector() -> None:
|
||||
)
|
||||
assert len(output) == 1
|
||||
assert output[0].page_content == "foo"
|
||||
|
||||
|
||||
@pytest.mark.requires("numpy", "sklearn")
|
||||
def test_sklearn_mmr_with_metadata_and_filter() -> None:
|
||||
"""Test end to end construction and search."""
|
||||
texts = ["foo", "foo", "bar", "baz"]
|
||||
metadatas = [{"page": str(i)} for i in range(len(texts))]
|
||||
docsearch = SKLearnVectorStore.from_texts(
|
||||
texts, FakeEmbeddings(), metadatas=metadatas
|
||||
)
|
||||
output = docsearch.max_marginal_relevance_search(
|
||||
"foo", k=1, fetch_k=4, filter={"page": "1"}
|
||||
)
|
||||
assert len(output) == 1
|
||||
assert output[0].page_content == "foo"
|
||||
assert output[0].metadata["page"] == "1"
|
||||
|
Loading…
Reference in New Issue
Block a user