mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
AmazonTextractPDFLoader documentation updates (#9415)
Description: Updating documentation to add AmazonTextractPDFLoader according to [comment](https://github.com/langchain-ai/langchain/pull/8661#issuecomment-1666572992) from [baskaryan](https://github.com/baskaryan) Adding one notebook and instructions to the modules/data_connection/document_loaders/pdf.mdx --------- Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com> Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
This commit is contained in:
parent
08feed3332
commit
0c8a88b3fa
@ -0,0 +1,878 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "1f3cebbe-079a-4bfe-b1a1-07bdac882ce2",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# Amazon Textract \n",
|
||||||
|
"\n",
|
||||||
|
"Amazon Textract is a machine learning (ML) service that automatically extracts text, handwriting, and data from scanned documents. It goes beyond simple optical character recognition (OCR) to identify, understand, and extract data from forms and tables. Today, many companies manually extract data from scanned documents such as PDFs, images, tables, and forms, or through simple OCR software that requires manual configuration (which often must be updated when the form changes). To overcome these manual and expensive processes, Textract uses ML to read and process any type of document, accurately extracting text, handwriting, tables, and other data with no manual effort. You can quickly automate document processing and act on the information extracted, whether you’re automating loans processing or extracting information from invoices and receipts. Textract can extract the data in minutes instead of hours or days.\n",
|
||||||
|
"\n",
|
||||||
|
"This sample demonstrates the use of Amazon Textract in combination with LangChain as a DocumentLoader.\n",
|
||||||
|
"\n",
|
||||||
|
"Textract supports PDF, TIFF, PNG and JPEG format.\n",
|
||||||
|
"\n",
|
||||||
|
"Check https://docs.aws.amazon.com/textract/latest/dg/limits-document.html for supported document sizes, languages and characters."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 1,
|
||||||
|
"id": "c049beaf-f904-4ce6-91ca-805da62084c2",
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"\n",
|
||||||
|
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.2\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.2.1\u001b[0m\n",
|
||||||
|
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpython -m pip install --upgrade pip\u001b[0m\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"!pip install langchain boto3 openai tiktoken python-dotenv -q"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "400b25c6-befa-4730-a201-39ff112c8858",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Sample 1\n",
|
||||||
|
"\n",
|
||||||
|
"The first example uses a local file, which internally will be send to Amazon Textract sync API [DetectDocumentText](https://docs.aws.amazon.com/textract/latest/dg/API_DetectDocumentText.html). \n",
|
||||||
|
"\n",
|
||||||
|
"Local files or URL endpoints like HTTP:// are limited to one page documents for Textract.\n",
|
||||||
|
"Multi-page documents have to reside on S3. This sample file is a jpeg."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 9,
|
||||||
|
"id": "1becee92-e82f-42d4-9b4e-b23d77cbe88d",
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from langchain.document_loaders import AmazonTextractPDFLoader\n",
|
||||||
|
"loader = AmazonTextractPDFLoader(\"example_data/alejandro_rosalez_sample-small.jpeg\")\n",
|
||||||
|
"documents = loader.load()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "d566dc56-c9a9-44ec-84fb-a81928f90d40",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Output from the file"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 10,
|
||||||
|
"id": "1272ce8c-d298-4059-ac0a-780bf5f82302",
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"[Document(page_content='Patient Information First Name: ALEJANDRO Last Name: ROSALEZ Date of Birth: 10/10/1982 Sex: M Marital Status: MARRIED Email Address: Address: 123 ANY STREET City: ANYTOWN State: CA Zip Code: 12345 Phone: 646-555-0111 Emergency Contact 1: First Name: CARLOS Last Name: SALAZAR Phone: 212-555-0150 Relationship to Patient: BROTHER Emergency Contact 2: First Name: JANE Last Name: DOE Phone: 650-555-0123 Relationship FRIEND to Patient: Did you feel fever or feverish lately? Yes No Are you having shortness of breath? Yes No Do you have a cough? Yes No Did you experience loss of taste or smell? Yes No Where you in contact with any confirmed COVID-19 positive patients? Yes No Did you travel in the past 14 days to any regions affected by COVID-19? Yes No Patient Information First Name: ALEJANDRO Last Name: ROSALEZ Date of Birth: 10/10/1982 Sex: M Marital Status: MARRIED Email Address: Address: 123 ANY STREET City: ANYTOWN State: CA Zip Code: 12345 Phone: 646-555-0111 Emergency Contact 1: First Name: CARLOS Last Name: SALAZAR Phone: 212-555-0150 Relationship to Patient: BROTHER Emergency Contact 2: First Name: JANE Last Name: DOE Phone: 650-555-0123 Relationship FRIEND to Patient: Did you feel fever or feverish lately? Yes No Are you having shortness of breath? Yes No Do you have a cough? Yes No Did you experience loss of taste or smell? Yes No Where you in contact with any confirmed COVID-19 positive patients? Yes No Did you travel in the past 14 days to any regions affected by COVID-19? Yes No ', metadata={'source': 'example_data/alejandro_rosalez_sample-small.jpeg', 'page': 1})]"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 10,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"documents"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "4cf7f19c-3635-453a-9c76-4baf98b8d7f4",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Sample 2\n",
|
||||||
|
"The next sample loads a file from an HTTPS endpoint. \n",
|
||||||
|
"It has to be single page, as Amazon Textract requires all multi-page documents to be stored on S3."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 7,
|
||||||
|
"id": "10374bfb-b325-451f-8bd0-c686710ab68c",
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from langchain.document_loaders import AmazonTextractPDFLoader\n",
|
||||||
|
"loader = AmazonTextractPDFLoader(\"https://amazon-textract-public-content.s3.us-east-2.amazonaws.com/langchain/alejandro_rosalez_sample_1.jpg\")\n",
|
||||||
|
"documents = loader.load()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 11,
|
||||||
|
"id": "16a2b6a3-7514-4c2c-a427-6847169af473",
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"[Document(page_content='Patient Information First Name: ALEJANDRO Last Name: ROSALEZ Date of Birth: 10/10/1982 Sex: M Marital Status: MARRIED Email Address: Address: 123 ANY STREET City: ANYTOWN State: CA Zip Code: 12345 Phone: 646-555-0111 Emergency Contact 1: First Name: CARLOS Last Name: SALAZAR Phone: 212-555-0150 Relationship to Patient: BROTHER Emergency Contact 2: First Name: JANE Last Name: DOE Phone: 650-555-0123 Relationship FRIEND to Patient: Did you feel fever or feverish lately? Yes No Are you having shortness of breath? Yes No Do you have a cough? Yes No Did you experience loss of taste or smell? Yes No Where you in contact with any confirmed COVID-19 positive patients? Yes No Did you travel in the past 14 days to any regions affected by COVID-19? Yes No Patient Information First Name: ALEJANDRO Last Name: ROSALEZ Date of Birth: 10/10/1982 Sex: M Marital Status: MARRIED Email Address: Address: 123 ANY STREET City: ANYTOWN State: CA Zip Code: 12345 Phone: 646-555-0111 Emergency Contact 1: First Name: CARLOS Last Name: SALAZAR Phone: 212-555-0150 Relationship to Patient: BROTHER Emergency Contact 2: First Name: JANE Last Name: DOE Phone: 650-555-0123 Relationship FRIEND to Patient: Did you feel fever or feverish lately? Yes No Are you having shortness of breath? Yes No Do you have a cough? Yes No Did you experience loss of taste or smell? Yes No Where you in contact with any confirmed COVID-19 positive patients? Yes No Did you travel in the past 14 days to any regions affected by COVID-19? Yes No ', metadata={'source': 'example_data/alejandro_rosalez_sample-small.jpeg', 'page': 1})]"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 11,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"documents"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "3a9cd8ec-e663-4dc7-9db1-d2f575253141",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Sample 3\n",
|
||||||
|
"\n",
|
||||||
|
"Processing a multi-page document requires the document to be on S3. The sample document resides in a bucket in us-east-2 and Textract needs to be called in that same region to be successful, so we set the region_name on the client and pass that in to the loader to ensure Textract is called from us-east-2. You could also to have your notebook running in us-east-2, setting the AWS_DEFAULT_REGION set to us-east-2 or when running in a different environment, pass in a boto3 Textract client with that region name like in the cell below."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 12,
|
||||||
|
"id": "8185e3e6-9599-4a47-8969-d6dcef3e6404",
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import boto3\n",
|
||||||
|
"textract_client = boto3.client('textract', region_name='us-east-2')\n",
|
||||||
|
"\n",
|
||||||
|
"file_path = \"s3://amazon-textract-public-content/langchain/layout-parser-paper.pdf\"\n",
|
||||||
|
"loader = AmazonTextractPDFLoader(file_path, client=textract_client)\n",
|
||||||
|
"documents = loader.load()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "b8901eec-070d-4fd6-9d65-52211d332441",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Now getting the number of pages to validate the response (printing out the full response would be quite long...). We expect 16 pages."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 13,
|
||||||
|
"id": "b23c01c8-cf69-4fe2-8141-4621edb7d79c",
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"16"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 13,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"len(documents)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "b3e41b4d-b159-4274-89be-80d8159134ef",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Using the AmazonTextractPDFLoader in an LangChain chain (e. g. OpenAI)\n",
|
||||||
|
"\n",
|
||||||
|
"The AmazonTextractPDFLoader can be used in a chain the same way the other loaders are used.\n",
|
||||||
|
"Textract itself does have a [Query feature](https://docs.aws.amazon.com/textract/latest/dg/API_Query.html), which offers similar functionality to the QA chain in this sample, which is worth checking out as well."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 14,
|
||||||
|
"id": "53c47b24-cc06-4256-9e5b-a82fc80bc55d",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# You can store your OPENAI_API_KEY in a .env file as well\n",
|
||||||
|
"# import os \n",
|
||||||
|
"# from dotenv import load_dotenv\n",
|
||||||
|
"\n",
|
||||||
|
"# load_dotenv()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 15,
|
||||||
|
"id": "a9ae004c-246c-4c7f-8458-191cd7424a9b",
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# Or set the OpenAI key in the environment directly\n",
|
||||||
|
"import os \n",
|
||||||
|
"os.environ[\"OPENAI_API_KEY\"] = \"your-OpenAI-API-key\""
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 16,
|
||||||
|
"id": "d52b089c-10ca-45fb-8669-8a1c5fee10d5",
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"' The authors are Zejiang Shen, Ruochen Zhang, Melissa Dell, Benjamin Charles Germain Lee, Jacob Carlson, Weining Li, Gardner, M., Grus, J., Neumann, M., Tafjord, O., Dasigi, P., Liu, N., Peters, M., Schmitz, M., Zettlemoyer, L., Lukasz Garncarek, Powalski, R., Stanislawek, T., Topolski, B., Halama, P., Gralinski, F., Graves, A., Fernández, S., Gomez, F., Schmidhuber, J., Harley, A.W., Ufkes, A., Derpanis, K.G., He, K., Gkioxari, G., Dollár, P., Girshick, R., He, K., Zhang, X., Ren, S., Sun, J., Kay, A., Lamiroy, B., Lopresti, D., Mears, J., Jakeway, E., Ferriter, M., Adams, C., Yarasavage, N., Thomas, D., Zwaard, K., Li, M., Cui, L., Huang,'"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 16,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"from langchain.llms import OpenAI\n",
|
||||||
|
"from langchain.chains.question_answering import load_qa_chain\n",
|
||||||
|
"\n",
|
||||||
|
"chain = load_qa_chain(llm=OpenAI(), chain_type=\"map_reduce\")\n",
|
||||||
|
"query = [\"Who are the autors?\"]\n",
|
||||||
|
"\n",
|
||||||
|
"chain.run(input_documents=documents, question=query)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "1a09d18b-ab7b-468e-ae66-f92abf666b9b",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"availableInstances": [
|
||||||
|
{
|
||||||
|
"_defaultOrder": 0,
|
||||||
|
"_isFastLaunch": true,
|
||||||
|
"category": "General purpose",
|
||||||
|
"gpuNum": 0,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 4,
|
||||||
|
"name": "ml.t3.medium",
|
||||||
|
"vcpuNum": 2
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 1,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "General purpose",
|
||||||
|
"gpuNum": 0,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 8,
|
||||||
|
"name": "ml.t3.large",
|
||||||
|
"vcpuNum": 2
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 2,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "General purpose",
|
||||||
|
"gpuNum": 0,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 16,
|
||||||
|
"name": "ml.t3.xlarge",
|
||||||
|
"vcpuNum": 4
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 3,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "General purpose",
|
||||||
|
"gpuNum": 0,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 32,
|
||||||
|
"name": "ml.t3.2xlarge",
|
||||||
|
"vcpuNum": 8
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 4,
|
||||||
|
"_isFastLaunch": true,
|
||||||
|
"category": "General purpose",
|
||||||
|
"gpuNum": 0,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 8,
|
||||||
|
"name": "ml.m5.large",
|
||||||
|
"vcpuNum": 2
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 5,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "General purpose",
|
||||||
|
"gpuNum": 0,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 16,
|
||||||
|
"name": "ml.m5.xlarge",
|
||||||
|
"vcpuNum": 4
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 6,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "General purpose",
|
||||||
|
"gpuNum": 0,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 32,
|
||||||
|
"name": "ml.m5.2xlarge",
|
||||||
|
"vcpuNum": 8
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 7,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "General purpose",
|
||||||
|
"gpuNum": 0,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 64,
|
||||||
|
"name": "ml.m5.4xlarge",
|
||||||
|
"vcpuNum": 16
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 8,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "General purpose",
|
||||||
|
"gpuNum": 0,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 128,
|
||||||
|
"name": "ml.m5.8xlarge",
|
||||||
|
"vcpuNum": 32
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 9,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "General purpose",
|
||||||
|
"gpuNum": 0,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 192,
|
||||||
|
"name": "ml.m5.12xlarge",
|
||||||
|
"vcpuNum": 48
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 10,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "General purpose",
|
||||||
|
"gpuNum": 0,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 256,
|
||||||
|
"name": "ml.m5.16xlarge",
|
||||||
|
"vcpuNum": 64
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 11,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "General purpose",
|
||||||
|
"gpuNum": 0,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 384,
|
||||||
|
"name": "ml.m5.24xlarge",
|
||||||
|
"vcpuNum": 96
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 12,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "General purpose",
|
||||||
|
"gpuNum": 0,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 8,
|
||||||
|
"name": "ml.m5d.large",
|
||||||
|
"vcpuNum": 2
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 13,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "General purpose",
|
||||||
|
"gpuNum": 0,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 16,
|
||||||
|
"name": "ml.m5d.xlarge",
|
||||||
|
"vcpuNum": 4
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 14,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "General purpose",
|
||||||
|
"gpuNum": 0,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 32,
|
||||||
|
"name": "ml.m5d.2xlarge",
|
||||||
|
"vcpuNum": 8
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 15,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "General purpose",
|
||||||
|
"gpuNum": 0,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 64,
|
||||||
|
"name": "ml.m5d.4xlarge",
|
||||||
|
"vcpuNum": 16
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 16,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "General purpose",
|
||||||
|
"gpuNum": 0,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 128,
|
||||||
|
"name": "ml.m5d.8xlarge",
|
||||||
|
"vcpuNum": 32
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 17,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "General purpose",
|
||||||
|
"gpuNum": 0,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 192,
|
||||||
|
"name": "ml.m5d.12xlarge",
|
||||||
|
"vcpuNum": 48
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 18,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "General purpose",
|
||||||
|
"gpuNum": 0,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 256,
|
||||||
|
"name": "ml.m5d.16xlarge",
|
||||||
|
"vcpuNum": 64
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 19,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "General purpose",
|
||||||
|
"gpuNum": 0,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 384,
|
||||||
|
"name": "ml.m5d.24xlarge",
|
||||||
|
"vcpuNum": 96
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 20,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "General purpose",
|
||||||
|
"gpuNum": 0,
|
||||||
|
"hideHardwareSpecs": true,
|
||||||
|
"memoryGiB": 0,
|
||||||
|
"name": "ml.geospatial.interactive",
|
||||||
|
"supportedImageNames": [
|
||||||
|
"sagemaker-geospatial-v1-0"
|
||||||
|
],
|
||||||
|
"vcpuNum": 0
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 21,
|
||||||
|
"_isFastLaunch": true,
|
||||||
|
"category": "Compute optimized",
|
||||||
|
"gpuNum": 0,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 4,
|
||||||
|
"name": "ml.c5.large",
|
||||||
|
"vcpuNum": 2
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 22,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "Compute optimized",
|
||||||
|
"gpuNum": 0,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 8,
|
||||||
|
"name": "ml.c5.xlarge",
|
||||||
|
"vcpuNum": 4
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 23,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "Compute optimized",
|
||||||
|
"gpuNum": 0,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 16,
|
||||||
|
"name": "ml.c5.2xlarge",
|
||||||
|
"vcpuNum": 8
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 24,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "Compute optimized",
|
||||||
|
"gpuNum": 0,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 32,
|
||||||
|
"name": "ml.c5.4xlarge",
|
||||||
|
"vcpuNum": 16
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 25,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "Compute optimized",
|
||||||
|
"gpuNum": 0,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 72,
|
||||||
|
"name": "ml.c5.9xlarge",
|
||||||
|
"vcpuNum": 36
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 26,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "Compute optimized",
|
||||||
|
"gpuNum": 0,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 96,
|
||||||
|
"name": "ml.c5.12xlarge",
|
||||||
|
"vcpuNum": 48
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 27,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "Compute optimized",
|
||||||
|
"gpuNum": 0,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 144,
|
||||||
|
"name": "ml.c5.18xlarge",
|
||||||
|
"vcpuNum": 72
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 28,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "Compute optimized",
|
||||||
|
"gpuNum": 0,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 192,
|
||||||
|
"name": "ml.c5.24xlarge",
|
||||||
|
"vcpuNum": 96
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 29,
|
||||||
|
"_isFastLaunch": true,
|
||||||
|
"category": "Accelerated computing",
|
||||||
|
"gpuNum": 1,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 16,
|
||||||
|
"name": "ml.g4dn.xlarge",
|
||||||
|
"vcpuNum": 4
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 30,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "Accelerated computing",
|
||||||
|
"gpuNum": 1,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 32,
|
||||||
|
"name": "ml.g4dn.2xlarge",
|
||||||
|
"vcpuNum": 8
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 31,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "Accelerated computing",
|
||||||
|
"gpuNum": 1,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 64,
|
||||||
|
"name": "ml.g4dn.4xlarge",
|
||||||
|
"vcpuNum": 16
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 32,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "Accelerated computing",
|
||||||
|
"gpuNum": 1,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 128,
|
||||||
|
"name": "ml.g4dn.8xlarge",
|
||||||
|
"vcpuNum": 32
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 33,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "Accelerated computing",
|
||||||
|
"gpuNum": 4,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 192,
|
||||||
|
"name": "ml.g4dn.12xlarge",
|
||||||
|
"vcpuNum": 48
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 34,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "Accelerated computing",
|
||||||
|
"gpuNum": 1,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 256,
|
||||||
|
"name": "ml.g4dn.16xlarge",
|
||||||
|
"vcpuNum": 64
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 35,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "Accelerated computing",
|
||||||
|
"gpuNum": 1,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 61,
|
||||||
|
"name": "ml.p3.2xlarge",
|
||||||
|
"vcpuNum": 8
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 36,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "Accelerated computing",
|
||||||
|
"gpuNum": 4,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 244,
|
||||||
|
"name": "ml.p3.8xlarge",
|
||||||
|
"vcpuNum": 32
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 37,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "Accelerated computing",
|
||||||
|
"gpuNum": 8,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 488,
|
||||||
|
"name": "ml.p3.16xlarge",
|
||||||
|
"vcpuNum": 64
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 38,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "Accelerated computing",
|
||||||
|
"gpuNum": 8,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 768,
|
||||||
|
"name": "ml.p3dn.24xlarge",
|
||||||
|
"vcpuNum": 96
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 39,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "Memory Optimized",
|
||||||
|
"gpuNum": 0,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 16,
|
||||||
|
"name": "ml.r5.large",
|
||||||
|
"vcpuNum": 2
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 40,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "Memory Optimized",
|
||||||
|
"gpuNum": 0,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 32,
|
||||||
|
"name": "ml.r5.xlarge",
|
||||||
|
"vcpuNum": 4
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 41,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "Memory Optimized",
|
||||||
|
"gpuNum": 0,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 64,
|
||||||
|
"name": "ml.r5.2xlarge",
|
||||||
|
"vcpuNum": 8
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 42,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "Memory Optimized",
|
||||||
|
"gpuNum": 0,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 128,
|
||||||
|
"name": "ml.r5.4xlarge",
|
||||||
|
"vcpuNum": 16
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 43,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "Memory Optimized",
|
||||||
|
"gpuNum": 0,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 256,
|
||||||
|
"name": "ml.r5.8xlarge",
|
||||||
|
"vcpuNum": 32
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 44,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "Memory Optimized",
|
||||||
|
"gpuNum": 0,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 384,
|
||||||
|
"name": "ml.r5.12xlarge",
|
||||||
|
"vcpuNum": 48
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 45,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "Memory Optimized",
|
||||||
|
"gpuNum": 0,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 512,
|
||||||
|
"name": "ml.r5.16xlarge",
|
||||||
|
"vcpuNum": 64
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 46,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "Memory Optimized",
|
||||||
|
"gpuNum": 0,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 768,
|
||||||
|
"name": "ml.r5.24xlarge",
|
||||||
|
"vcpuNum": 96
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 47,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "Accelerated computing",
|
||||||
|
"gpuNum": 1,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 16,
|
||||||
|
"name": "ml.g5.xlarge",
|
||||||
|
"vcpuNum": 4
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 48,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "Accelerated computing",
|
||||||
|
"gpuNum": 1,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 32,
|
||||||
|
"name": "ml.g5.2xlarge",
|
||||||
|
"vcpuNum": 8
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 49,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "Accelerated computing",
|
||||||
|
"gpuNum": 1,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 64,
|
||||||
|
"name": "ml.g5.4xlarge",
|
||||||
|
"vcpuNum": 16
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 50,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "Accelerated computing",
|
||||||
|
"gpuNum": 1,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 128,
|
||||||
|
"name": "ml.g5.8xlarge",
|
||||||
|
"vcpuNum": 32
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 51,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "Accelerated computing",
|
||||||
|
"gpuNum": 1,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 256,
|
||||||
|
"name": "ml.g5.16xlarge",
|
||||||
|
"vcpuNum": 64
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 52,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "Accelerated computing",
|
||||||
|
"gpuNum": 4,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 192,
|
||||||
|
"name": "ml.g5.12xlarge",
|
||||||
|
"vcpuNum": 48
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 53,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "Accelerated computing",
|
||||||
|
"gpuNum": 4,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 384,
|
||||||
|
"name": "ml.g5.24xlarge",
|
||||||
|
"vcpuNum": 96
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 54,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "Accelerated computing",
|
||||||
|
"gpuNum": 8,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 768,
|
||||||
|
"name": "ml.g5.48xlarge",
|
||||||
|
"vcpuNum": 192
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 55,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "Accelerated computing",
|
||||||
|
"gpuNum": 8,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 1152,
|
||||||
|
"name": "ml.p4d.24xlarge",
|
||||||
|
"vcpuNum": 96
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"_defaultOrder": 56,
|
||||||
|
"_isFastLaunch": false,
|
||||||
|
"category": "Accelerated computing",
|
||||||
|
"gpuNum": 8,
|
||||||
|
"hideHardwareSpecs": false,
|
||||||
|
"memoryGiB": 1152,
|
||||||
|
"name": "ml.p4de.24xlarge",
|
||||||
|
"vcpuNum": 96
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"instance_type": "ml.t3.medium",
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3 (ipykernel)",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.11.1"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 5
|
||||||
|
}
|
@ -1,4 +1,4 @@
|
|||||||
## Using PyPDF
|
# Using PyPDF
|
||||||
|
|
||||||
Load PDF using `pypdf` into array of documents, where each document contains the page content and metadata with `page` number.
|
Load PDF using `pypdf` into array of documents, where each document contains the page content and metadata with `page` number.
|
||||||
|
|
||||||
@ -389,3 +389,17 @@ data[0]
|
|||||||
```
|
```
|
||||||
|
|
||||||
</CodeOutputBlock>
|
</CodeOutputBlock>
|
||||||
|
|
||||||
|
## Using AmazonTextractPDFParser
|
||||||
|
|
||||||
|
The AmazonTextractPDFLoader calls the [Amazon Textract Service](https://aws.amazon.com/textract/) to convert PDFs into a Document structure. The loader does pure OCR at the moment, with more features like layout support planned, depending on demand. Single and multi-page documents are supported with up to 3000 pages and 512 MB of size.
|
||||||
|
|
||||||
|
For the call to be successful an AWS account is required, similar to the [AWS CLI](https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html) requirements.
|
||||||
|
|
||||||
|
Besides the AWS configuration, it is very similar to the other PDF loaders, while also supporting JPEG, PNG and TIFF and non-native PDF formats.
|
||||||
|
|
||||||
|
```python
|
||||||
|
from langchain.document_loaders import AmazonTextractPDFLoader
|
||||||
|
loader = AmazonTextractPDFLoader("example_data/alejandro_rosalez_sample-small.jpeg")
|
||||||
|
documents = loader.load()
|
||||||
|
```
|
Loading…
Reference in New Issue
Block a user