community: Add Writer integration (#27646)

**Description:** Add support for Writer chat models   
**Issue:** N/A
**Dependencies:** Add `writer-sdk` to optional dependencies.
**Twitter handle:** Please tag `@samjulien` and `@Get_Writer`

**Tests and docs**
- [x] Unit test
- [x] Example notebook in `docs/docs/integrations` directory.

**Lint and test**
- [x] Run `make format` 
- [x] Run `make lint`
- [x] Run `make test`

---------

Co-authored-by: Johannes <tolstoy.work@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
Sam Julien 2024-10-30 11:06:05 -07:00 committed by GitHub
parent 595dc592c9
commit 0a472e2a2d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 965 additions and 1 deletions

View File

@ -0,0 +1,343 @@
{
"cells": [
{
"metadata": {},
"cell_type": "raw",
"source": [
"---\n",
"sidebar_label: Writer\n",
"---"
],
"id": "85e07aae70a15572"
},
{
"cell_type": "markdown",
"id": "cb4dd00a-8893-4a45-96f7-9a9fc341cd61",
"metadata": {},
"source": [
"# ChatWriter\n",
"\n",
"This notebook provides a quick overview for getting started with Writer [chat models](/docs/concepts/#chat-models).\n",
"\n",
"Writer has several chat models. You can find information about their latest models and their costs, context windows, and supported input types in the [Writer docs](https://dev.writer.com/home/models).\n",
"\n",
":::"
]
},
{
"cell_type": "markdown",
"id": "e49f1e0d",
"metadata": {},
"source": [
"## Overview\n",
"\n",
"### Integration details\n",
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/docs/integrations/chat/openai) | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| ChatWriter | langchain-community | ❌ | ❌ | ❌ | ❌ | ❌ |\n",
"\n",
"### Model features\n",
"| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | Image input | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
"| ✅ | ❌ | ✅ | ❌ | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | \n",
"\n",
"## Setup\n",
"\n",
"To access Writer models you'll need to create a Writer account, get an API key, and install the `writer-sdk` and `langchain-community` packages.\n",
"\n",
"### Credentials\n",
"\n",
"Head to [Writer AI Studio](https://app.writer.com/aistudio/signup?utm_campaign=devrel) to sign up to OpenAI and generate an API key. Once you've done this set the WRITER_API_KEY environment variable:"
]
},
{
"cell_type": "code",
"id": "e817fe2e-4f1d-4533-b19e-2400b1cf6ce8",
"metadata": {
"ExecuteTime": {
"end_time": "2024-10-24T13:51:54.323678Z",
"start_time": "2024-10-24T13:51:42.127404Z"
}
},
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.environ.get(\"WRITER_API_KEY\"):\n",
" os.environ[\"WRITER_API_KEY\"] = getpass.getpass(\"Enter your Writer API key: \")"
],
"outputs": [],
"execution_count": 1
},
{
"cell_type": "markdown",
"id": "c59722a9-6dbb-45f7-ae59-5be50ca5733d",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain Writer integration lives in the `langchain-community` package:"
]
},
{
"cell_type": "code",
"id": "2113471c-75d7-45df-b784-d78da4ef7aba",
"metadata": {
"ExecuteTime": {
"end_time": "2024-10-24T13:52:49.262240Z",
"start_time": "2024-10-24T13:52:47.564879Z"
}
},
"source": [
"%pip install -qU langchain-community writer-sdk"
],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"execution_count": 4
},
{
"cell_type": "markdown",
"id": "1098bc9d-ce83-462b-8c19-f85bf3a159dc",
"metadata": {},
"source": [
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:"
]
},
{
"cell_type": "code",
"id": "522686de",
"metadata": {
"tags": [],
"ExecuteTime": {
"end_time": "2024-10-24T13:52:38.822950Z",
"start_time": "2024-10-24T13:52:38.674441Z"
}
},
"source": [
"from langchain_community.chat_models.writer import ChatWriter\n",
"\n",
"llm = ChatWriter(\n",
" model=\"palmyra-x-004\",\n",
" temperature=0.7,\n",
" max_tokens=1000,\n",
" # api_key=\"...\", # if you prefer to pass api key in directly instaed of using env vars\n",
" # base_url=\"...\",\n",
" # other params...\n",
")"
],
"outputs": [
{
"ename": "ImportError",
"evalue": "cannot import name 'ChatWriter' from 'langchain_community.chat_models' (/home/yanomaly/PycharmProjects/whitesnake/writer/langсhain/libs/community/langchain_community/chat_models/__init__.py)",
"output_type": "error",
"traceback": [
"\u001B[0;31m---------------------------------------------------------------------------\u001B[0m",
"\u001B[0;31mImportError\u001B[0m Traceback (most recent call last)",
"Cell \u001B[0;32mIn[3], line 1\u001B[0m\n\u001B[0;32m----> 1\u001B[0m \u001B[38;5;28;01mfrom\u001B[39;00m \u001B[38;5;21;01mlangchain_community\u001B[39;00m\u001B[38;5;21;01m.\u001B[39;00m\u001B[38;5;21;01mchat_models\u001B[39;00m \u001B[38;5;28;01mimport\u001B[39;00m ChatWriter\n\u001B[1;32m 3\u001B[0m llm \u001B[38;5;241m=\u001B[39m ChatWriter(\n\u001B[1;32m 4\u001B[0m model\u001B[38;5;241m=\u001B[39m\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mpalmyra-x-004\u001B[39m\u001B[38;5;124m\"\u001B[39m,\n\u001B[1;32m 5\u001B[0m temperature\u001B[38;5;241m=\u001B[39m\u001B[38;5;241m0.7\u001B[39m,\n\u001B[0;32m (...)\u001B[0m\n\u001B[1;32m 9\u001B[0m \u001B[38;5;66;03m# other params...\u001B[39;00m\n\u001B[1;32m 10\u001B[0m )\n",
"\u001B[0;31mImportError\u001B[0m: cannot import name 'ChatWriter' from 'langchain_community.chat_models' (/home/yanomaly/PycharmProjects/whitesnake/writer/langсhain/libs/community/langchain_community/chat_models/__init__.py)"
]
}
],
"execution_count": 3
},
{
"cell_type": "markdown",
"id": "6511982a-734a-4193-a47d-254f8dcaff5e",
"metadata": {},
"source": [
"## Invocation"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ce16ad78-8e6f-48cd-954e-98be75eb5836",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"messages = [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that writes poems about the Python programming language.\",\n",
" ),\n",
" (\"human\", \"Write a poem about Python.\"),\n",
"]\n",
"ai_msg = llm.invoke(messages)\n",
"ai_msg"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2cd224b8-4499-41fb-a604-d53a7ff17b2e",
"metadata": {},
"outputs": [],
"source": [
"print(ai_msg.content)"
]
},
{
"cell_type": "markdown",
"id": "778f912a-66ea-4a5d-b3de-6c7db4baba26",
"metadata": {},
"source": [
"## Chaining\n",
"\n",
"We can [chain](/docs/how_to/sequence/) our model with a prompt template like so:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fbb043e6",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that writes poems about the {input_language} programming language.\",\n",
" ),\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"\n",
"chain = prompt | llm\n",
"chain.invoke(\n",
" {\n",
" \"input_language\": \"Java\",\n",
" \"input\": \"Write a poem about Java.\",\n",
" }\n",
")"
]
},
{
"cell_type": "markdown",
"id": "0b1b52a5-b58d-40c9-bcdd-88eb8fb351e2",
"metadata": {},
"source": [
"## Tool calling\n",
"\n",
"Writer supports [tool calling](https://dev.writer.com/api-guides/tool-calling), which lets you describe tools and their arguments, and have the model return a JSON object with a tool to invoke and the inputs to that tool.\n",
"\n",
"### ChatWriter.bind_tools()\n",
"\n",
"With `ChatWriter.bind_tools`, we can easily pass in Pydantic classes, dict schemas, LangChain tools, or even functions as tools to the model. Under the hood these are converted to tool schemas, which looks like:\n",
"```\n",
"{\n",
" \"name\": \"...\",\n",
" \"description\": \"...\",\n",
" \"parameters\": {...} # JSONSchema\n",
"}\n",
"```\n",
"and passed in every model invocation."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "b7ea7690-ec7a-4337-b392-e87d1f39a6ec",
"metadata": {},
"outputs": [],
"source": [
"from pydantic import BaseModel, Field\n",
"\n",
"\n",
"class GetWeather(BaseModel):\n",
" \"\"\"Get the current weather in a given location\"\"\"\n",
"\n",
" location: str = Field(..., description=\"The city and state, e.g. San Francisco, CA\")\n",
"\n",
"\n",
"llm_with_tools = llm.bind_tools([GetWeather])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1d1ab955-6a68-42f8-bb5d-86eb1111478a",
"metadata": {},
"outputs": [],
"source": [
"ai_msg = llm_with_tools.invoke(\n",
" \"what is the weather like in New York City\",\n",
")\n",
"ai_msg"
]
},
{
"cell_type": "markdown",
"id": "768d1ae4-4b1a-48eb-a329-c8d5051067a3",
"metadata": {},
"source": [
"### AIMessage.tool_calls\n",
"Notice that the AIMessage has a `tool_calls` attribute. This contains in a standardized ToolCall format that is model-provider agnostic."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "166cb7ce-831d-4a7c-9721-abc107f11084",
"metadata": {},
"outputs": [],
"source": [
"ai_msg.tool_calls"
]
},
{
"cell_type": "markdown",
"id": "e082c9ac-c7c7-4aff-a8ec-8e220262a59c",
"metadata": {},
"source": [
"For more on binding tools and tool call outputs, head to the [tool calling](/docs/how_to/function_calling) docs."
]
},
{
"cell_type": "markdown",
"id": "a796d728-971b-408b-88d5-440015bbb941",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all Writer features, head to our [API reference](https://dev.writer.com/api-guides/api-reference/completion-api/chat-completion)."
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -96,3 +96,4 @@ nanopq==0.2.1
mlflow[genai]>=2.14.0
databricks-sdk>=0.30.0
websocket>=0.2.1,<1
writer-sdk>=1.2.0

View File

@ -0,0 +1,317 @@
"""Writer chat wrapper."""
from __future__ import annotations
import logging
from typing import (
Any,
AsyncIterator,
Callable,
Dict,
Iterator,
List,
Literal,
Mapping,
Optional,
Sequence,
Tuple,
Type,
Union,
)
from langchain_core.callbacks import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models import LanguageModelInput
from langchain_core.language_models.chat_models import (
BaseChatModel,
agenerate_from_stream,
generate_from_stream,
)
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
ChatMessage,
HumanMessage,
SystemMessage,
ToolMessage,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.runnables import Runnable
from langchain_core.utils.function_calling import convert_to_openai_tool
from pydantic import BaseModel, ConfigDict, Field, SecretStr
logger = logging.getLogger(__name__)
def _convert_message_to_dict(message: BaseMessage) -> dict:
"""Convert a LangChain message to a Writer message dict."""
message_dict = {"role": "", "content": message.content}
if isinstance(message, ChatMessage):
message_dict["role"] = message.role
elif isinstance(message, HumanMessage):
message_dict["role"] = "user"
elif isinstance(message, AIMessage):
message_dict["role"] = "assistant"
if message.tool_calls:
message_dict["tool_calls"] = [
{
"id": tool["id"],
"type": "function",
"function": {"name": tool["name"], "arguments": tool["args"]},
}
for tool in message.tool_calls
]
elif isinstance(message, SystemMessage):
message_dict["role"] = "system"
elif isinstance(message, ToolMessage):
message_dict["role"] = "tool"
message_dict["tool_call_id"] = message.tool_call_id
else:
raise ValueError(f"Got unknown message type: {type(message)}")
if message.name:
message_dict["name"] = message.name
return message_dict
def _convert_dict_to_message(response_dict: Dict[str, Any]) -> BaseMessage:
"""Convert a Writer message dict to a LangChain message."""
role = response_dict["role"]
content = response_dict.get("content", "")
if role == "user":
return HumanMessage(content=content)
elif role == "assistant":
additional_kwargs = {}
if tool_calls := response_dict.get("tool_calls"):
additional_kwargs["tool_calls"] = tool_calls
return AIMessageChunk(content=content, additional_kwargs=additional_kwargs)
elif role == "system":
return SystemMessage(content=content)
elif role == "tool":
return ToolMessage(
content=content,
tool_call_id=response_dict["tool_call_id"],
name=response_dict.get("name"),
)
else:
return ChatMessage(content=content, role=role)
class ChatWriter(BaseChatModel):
"""Writer chat model.
To use, you should have the ``writer-sdk`` Python package installed, and the
environment variable ``WRITER_API_KEY`` set with your API key.
Example:
.. code-block:: python
from langchain_community.chat_models import ChatWriter
chat = ChatWriter(model="palmyra-x-004")
"""
client: Any = Field(default=None, exclude=True) #: :meta private:
async_client: Any = Field(default=None, exclude=True) #: :meta private:
model_name: str = Field(default="palmyra-x-004", alias="model")
"""Model name to use."""
temperature: float = 0.7
"""What sampling temperature to use."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for `create` call not explicitly specified."""
writer_api_key: Optional[SecretStr] = Field(default=None, alias="api_key")
"""Writer API key."""
writer_api_base: Optional[str] = Field(default=None, alias="base_url")
"""Base URL for API requests."""
streaming: bool = False
"""Whether to stream the results or not."""
n: int = 1
"""Number of chat completions to generate for each prompt."""
max_tokens: Optional[int] = None
"""Maximum number of tokens to generate."""
model_config = ConfigDict(populate_by_name=True)
@property
def _llm_type(self) -> str:
"""Return type of chat model."""
return "writer-chat"
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {
"model_name": self.model_name,
"temperature": self.temperature,
"streaming": self.streaming,
**self.model_kwargs,
}
def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult:
generations = []
for choice in response["choices"]:
message = _convert_dict_to_message(choice["message"])
gen = ChatGeneration(
message=message,
generation_info=dict(finish_reason=choice.get("finish_reason")),
)
generations.append(gen)
token_usage = response.get("usage", {})
llm_output = {
"token_usage": token_usage,
"model_name": self.model_name,
"system_fingerprint": response.get("system_fingerprint", ""),
}
return ChatResult(generations=generations, llm_output=llm_output)
def _convert_messages_to_dicts(
self, messages: List[BaseMessage], stop: Optional[List[str]] = None
) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
params = {
"model": self.model_name,
"temperature": self.temperature,
"n": self.n,
"stream": self.streaming,
**self.model_kwargs,
}
if stop:
params["stop"] = stop
if self.max_tokens is not None:
params["max_tokens"] = self.max_tokens
message_dicts = [_convert_message_to_dict(m) for m in messages]
return message_dicts, params
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
message_dicts, params = self._convert_messages_to_dicts(messages, stop)
params = {**params, **kwargs, "stream": True}
response = self.client.chat.chat(messages=message_dicts, **params)
for chunk in response:
delta = chunk["choices"][0].get("delta")
if not delta or not delta.get("content"):
continue
chunk = _convert_dict_to_message(
{"role": "assistant", "content": delta["content"]}
)
chunk = ChatGenerationChunk(message=chunk)
if run_manager:
run_manager.on_llm_new_token(chunk.text)
yield chunk
async def _astream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[ChatGenerationChunk]:
message_dicts, params = self._convert_messages_to_dicts(messages, stop)
params = {**params, **kwargs, "stream": True}
response = await self.async_client.chat.chat(messages=message_dicts, **params)
async for chunk in response:
delta = chunk["choices"][0].get("delta")
if not delta or not delta.get("content"):
continue
chunk = _convert_dict_to_message(
{"role": "assistant", "content": delta["content"]}
)
chunk = ChatGenerationChunk(message=chunk)
if run_manager:
await run_manager.on_llm_new_token(chunk.text)
yield chunk
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
if self.streaming:
return generate_from_stream(
self._stream(messages, stop, run_manager, **kwargs)
)
message_dicts, params = self._convert_messages_to_dicts(messages, stop)
params = {**params, **kwargs}
response = self.client.chat.chat(messages=message_dicts, **params)
return self._create_chat_result(response)
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
if self.streaming:
return await agenerate_from_stream(
self._astream(messages, stop, run_manager, **kwargs)
)
message_dicts, params = self._convert_messages_to_dicts(messages, stop)
params = {**params, **kwargs}
response = await self.async_client.chat.chat(messages=message_dicts, **params)
return self._create_chat_result(response)
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling Writer API."""
return {
"model": self.model_name,
"temperature": self.temperature,
"stream": self.streaming,
"n": self.n,
"max_tokens": self.max_tokens,
**self.model_kwargs,
}
def bind_tools(
self,
tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable]],
*,
tool_choice: Optional[Union[str, Literal["auto", "none"]]] = None,
**kwargs: Any,
) -> Runnable[LanguageModelInput, BaseMessage]:
"""Bind tools to the chat model.
Args:
tools: Tools to bind to the model
tool_choice: Which tool to require ('auto', 'none', or specific tool name)
**kwargs: Additional parameters to pass to the chat model
Returns:
A runnable that will use the tools
"""
formatted_tools = [convert_to_openai_tool(tool) for tool in tools]
if tool_choice:
kwargs["tool_choice"] = (
(tool_choice)
if tool_choice in ("auto", "none")
else {"type": "function", "function": {"name": tool_choice}}
)
return super().bind(tools=formatted_tools, **kwargs)

View File

@ -0,0 +1,303 @@
"""Unit tests for Writer chat model integration."""
import json
from typing import Any, Dict, List
from unittest.mock import AsyncMock, MagicMock, patch
import pytest
from langchain_core.callbacks.manager import CallbackManager
from langchain_core.messages import AIMessage, HumanMessage, SystemMessage, ToolMessage
from pydantic import SecretStr
from langchain_community.chat_models.writer import ChatWriter, _convert_dict_to_message
from tests.unit_tests.callbacks.fake_callback_handler import FakeCallbackHandler
class TestChatWriter:
def test_writer_model_param(self) -> None:
"""Test different ways to initialize the chat model."""
test_cases: List[dict] = [
{"model_name": "palmyra-x-004", "writer_api_key": "test-key"},
{"model": "palmyra-x-004", "writer_api_key": "test-key"},
{"model_name": "palmyra-x-004", "writer_api_key": "test-key"},
{
"model": "palmyra-x-004",
"writer_api_key": "test-key",
"temperature": 0.5,
},
]
for case in test_cases:
chat = ChatWriter(**case)
assert chat.model_name == "palmyra-x-004"
assert chat.writer_api_key
assert chat.writer_api_key.get_secret_value() == "test-key"
assert chat.temperature == (0.5 if "temperature" in case else 0.7)
def test_convert_dict_to_message_human(self) -> None:
"""Test converting a human message dict to a LangChain message."""
message = {"role": "user", "content": "Hello"}
result = _convert_dict_to_message(message)
assert isinstance(result, HumanMessage)
assert result.content == "Hello"
def test_convert_dict_to_message_ai(self) -> None:
"""Test converting an AI message dict to a LangChain message."""
message = {"role": "assistant", "content": "Hello"}
result = _convert_dict_to_message(message)
assert isinstance(result, AIMessage)
assert result.content == "Hello"
def test_convert_dict_to_message_system(self) -> None:
"""Test converting a system message dict to a LangChain message."""
message = {"role": "system", "content": "You are a helpful assistant"}
result = _convert_dict_to_message(message)
assert isinstance(result, SystemMessage)
assert result.content == "You are a helpful assistant"
def test_convert_dict_to_message_tool_call(self) -> None:
"""Test converting a tool call message dict to a LangChain message."""
content = json.dumps({"result": 42})
message = {
"role": "tool",
"name": "get_number",
"content": content,
"tool_call_id": "call_abc123",
}
result = _convert_dict_to_message(message)
assert isinstance(result, ToolMessage)
assert result.name == "get_number"
assert result.content == content
def test_convert_dict_to_message_with_tool_calls(self) -> None:
"""Test converting an AIMessage with tool calls."""
message = {
"role": "assistant",
"content": "",
"tool_calls": [
{
"id": "call_abc123",
"type": "function",
"function": {
"name": "get_weather",
"arguments": '{"location": "London"}',
},
}
],
}
result = _convert_dict_to_message(message)
assert isinstance(result, AIMessage)
assert result.tool_calls
assert len(result.tool_calls) == 1
assert result.tool_calls[0]["name"] == "get_weather"
assert result.tool_calls[0]["args"]["location"] == "London"
@pytest.fixture(autouse=True)
def mock_completion(self) -> Dict[str, Any]:
"""Fixture providing a mock API response."""
return {
"id": "chat-12345",
"object": "chat.completion",
"created": 1699000000,
"model": "palmyra-x-004",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "Hello! How can I help you?",
},
"finish_reason": "stop",
}
],
"usage": {"prompt_tokens": 10, "completion_tokens": 8, "total_tokens": 18},
}
@pytest.fixture(autouse=True)
def mock_response(self) -> Dict[str, Any]:
response = {
"id": "chat-12345",
"choices": [
{
"message": {
"role": "assistant",
"content": "",
"tool_calls": [
{
"id": "call_abc123",
"type": "function",
"function": {
"name": "GetWeather",
"arguments": '{"location": "London"}',
},
}
],
},
"finish_reason": "tool_calls",
}
],
}
return response
@pytest.fixture(autouse=True)
def mock_streaming_chunks(self) -> List[Dict[str, Any]]:
"""Fixture providing mock streaming response chunks."""
return [
{
"id": "chat-12345",
"object": "chat.completion.chunk",
"created": 1699000000,
"model": "palmyra-x-004",
"choices": [
{
"index": 0,
"delta": {
"role": "assistant",
"content": "Hello",
},
"finish_reason": None,
}
],
},
{
"id": "chat-12345",
"object": "chat.completion.chunk",
"created": 1699000000,
"model": "palmyra-x-004",
"choices": [
{
"index": 0,
"delta": {
"content": "!",
},
"finish_reason": "stop",
}
],
},
]
def test_sync_completion(self, mock_completion: Dict[str, Any]) -> None:
"""Test basic chat completion with mocked response."""
chat = ChatWriter(api_key=SecretStr("test-key"))
mock_client = MagicMock()
mock_client.chat.chat.return_value = mock_completion
with patch.object(chat, "client", mock_client):
message = HumanMessage(content="Hi there!")
response = chat.invoke([message])
assert isinstance(response, AIMessage)
assert response.content == "Hello! How can I help you?"
async def test_async_completion(self, mock_completion: Dict[str, Any]) -> None:
"""Test async chat completion with mocked response."""
chat = ChatWriter(api_key=SecretStr("test-key"))
mock_client = AsyncMock()
mock_client.chat.chat.return_value = mock_completion
with patch.object(chat, "async_client", mock_client):
message = HumanMessage(content="Hi there!")
response = await chat.ainvoke([message])
assert isinstance(response, AIMessage)
assert response.content == "Hello! How can I help you?"
def test_sync_streaming(self, mock_streaming_chunks: List[Dict[str, Any]]) -> None:
"""Test sync streaming with callback handler."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
chat = ChatWriter(
streaming=True,
callback_manager=callback_manager,
max_tokens=10,
api_key=SecretStr("test-key"),
)
mock_client = MagicMock()
mock_response = MagicMock()
mock_response.__iter__.return_value = mock_streaming_chunks
mock_client.chat.chat.return_value = mock_response
with patch.object(chat, "client", mock_client):
message = HumanMessage(content="Hi")
response = chat.invoke([message])
assert isinstance(response, AIMessage)
assert callback_handler.llm_streams > 0
assert response.content == "Hello!"
async def test_async_streaming(
self, mock_streaming_chunks: List[Dict[str, Any]]
) -> None:
"""Test async streaming with callback handler."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
chat = ChatWriter(
streaming=True,
callback_manager=callback_manager,
max_tokens=10,
api_key=SecretStr("test-key"),
)
mock_client = AsyncMock()
mock_response = AsyncMock()
mock_response.__aiter__.return_value = mock_streaming_chunks
mock_client.chat.chat.return_value = mock_response
with patch.object(chat, "async_client", mock_client):
message = HumanMessage(content="Hi")
response = await chat.ainvoke([message])
assert isinstance(response, AIMessage)
assert callback_handler.llm_streams > 0
assert response.content == "Hello!"
def test_sync_tool_calling(self, mock_response: Dict[str, Any]) -> None:
"""Test synchronous tool calling functionality."""
from pydantic import BaseModel, Field
class GetWeather(BaseModel):
"""Get the weather in a location."""
location: str = Field(..., description="The location to get weather for")
mock_client = MagicMock()
mock_client.chat.chat.return_value = mock_response
chat = ChatWriter(api_key=SecretStr("test-key"), client=mock_client)
chat_with_tools = chat.bind_tools(
tools=[GetWeather],
tool_choice="GetWeather",
)
response = chat_with_tools.invoke("What's the weather in London?")
assert isinstance(response, AIMessage)
assert response.tool_calls
assert response.tool_calls[0]["name"] == "GetWeather"
assert response.tool_calls[0]["args"]["location"] == "London"
async def test_async_tool_calling(self, mock_response: Dict[str, Any]) -> None:
"""Test asynchronous tool calling functionality."""
from pydantic import BaseModel, Field
class GetWeather(BaseModel):
"""Get the weather in a location."""
location: str = Field(..., description="The location to get weather for")
mock_client = AsyncMock()
mock_client.chat.chat.return_value = mock_response
chat = ChatWriter(api_key=SecretStr("test-key"), async_client=mock_client)
chat_with_tools = chat.bind_tools(
tools=[GetWeather],
tool_choice="GetWeather",
)
response = await chat_with_tools.ainvoke("What's the weather in London?")
assert isinstance(response, AIMessage)
assert response.tool_calls
assert response.tool_calls[0]["name"] == "GetWeather"
assert response.tool_calls[0]["args"]["location"] == "London"