diff --git a/docs/modules/indexes/retrievers/examples/elastic_search_bm25.ipynb b/docs/modules/indexes/retrievers/examples/elastic_search_bm25.ipynb index 424de3dcd4..35da9165e0 100644 --- a/docs/modules/indexes/retrievers/examples/elastic_search_bm25.ipynb +++ b/docs/modules/indexes/retrievers/examples/elastic_search_bm25.ipynb @@ -14,7 +14,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "id": "393ac030", "metadata": {}, "outputs": [], @@ -32,13 +32,13 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 2, "id": "bcb3c8c2", "metadata": {}, "outputs": [], "source": [ "elasticsearch_url=\"http://localhost:9200\"\n", - "retriever = ElasticSearchBM25Retriever.create(elasticsearch_url, \"langchain-index-3\")" + "retriever = ElasticSearchBM25Retriever.create(elasticsearch_url, \"langchain-index-4\")" ] }, { @@ -66,21 +66,21 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 3, "id": "98b1c017", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "['386c76c9-4355-4c12-aaeb-7b80054caf93',\n", - " 'fffd279c-a0c9-4158-a904-6e242c517c99',\n", - " '7f5528a3-18d0-43b0-894d-f6770a002219',\n", - " 'e2ef5e32-d5bd-44e2-b045-cfc5a8e0a0a1',\n", - " 'cce8ba48-e473-4235-bca2-2c8d65e73ccf']" + "['cbd4cb47-8d9f-4f34-b80e-ea871bc49856',\n", + " 'f3bd2e24-76d1-4f9b-826b-ec4c0e8c7365',\n", + " '8631bfc8-7c12-48ee-ab56-8ad5f373676e',\n", + " '8be8374c-3253-4d87-928d-d73550a2ecf0',\n", + " 'd79f457b-2842-4eab-ae10-77aa420b53d7']" ] }, - "execution_count": 14, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -101,7 +101,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 4, "id": "c0455218", "metadata": {}, "outputs": [], @@ -111,7 +111,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 5, "id": "7dfa5c29", "metadata": {}, "outputs": [ @@ -122,7 +122,7 @@ " Document(page_content='foo bar', metadata={})]" ] }, - "execution_count": 16, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } diff --git a/docs/modules/indexes/retrievers/examples/tf_idf_retriever.ipynb b/docs/modules/indexes/retrievers/examples/tf_idf_retriever.ipynb new file mode 100644 index 0000000000..008a96daf7 --- /dev/null +++ b/docs/modules/indexes/retrievers/examples/tf_idf_retriever.ipynb @@ -0,0 +1,127 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "ab66dd43", + "metadata": {}, + "source": [ + "# TF-IDF Retriever\n", + "\n", + "This notebook goes over how to use a retriever that under the hood uses TF-IDF using scikit-learn.\n", + "\n", + "For more information on the details of TF-IDF see [this blog post](https://medium.com/data-science-bootcamp/tf-idf-basics-of-information-retrieval-48de122b2a4c)." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "393ac030", + "metadata": {}, + "outputs": [], + "source": [ + "from langchain.retrievers import TFIDFRetriever" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a801b57c", + "metadata": {}, + "outputs": [], + "source": [ + "# !pip install scikit-learn" + ] + }, + { + "cell_type": "markdown", + "id": "aaf80e7f", + "metadata": {}, + "source": [ + "## Create New Retriever with Texts" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "98b1c017", + "metadata": {}, + "outputs": [], + "source": [ + "retriever = TFIDFRetriever.from_texts([\"foo\", \"bar\", \"world\", \"hello\", \"foo bar\"])" + ] + }, + { + "cell_type": "markdown", + "id": "08437fa2", + "metadata": {}, + "source": [ + "## Use Retriever\n", + "\n", + "We can now use the retriever!" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "c0455218", + "metadata": {}, + "outputs": [], + "source": [ + "result = retriever.get_relevant_documents(\"foo\")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "7dfa5c29", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[Document(page_content='foo', metadata={}),\n", + " Document(page_content='foo bar', metadata={}),\n", + " Document(page_content='hello', metadata={}),\n", + " Document(page_content='world', metadata={})]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "result" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "74bd9256", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.1" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/langchain/retrievers/__init__.py b/langchain/retrievers/__init__.py index 18224c62bb..efeff643b7 100644 --- a/langchain/retrievers/__init__.py +++ b/langchain/retrievers/__init__.py @@ -3,6 +3,7 @@ from langchain.retrievers.elastic_search_bm25 import ElasticSearchBM25Retriever from langchain.retrievers.metal import MetalRetriever from langchain.retrievers.pinecone_hybrid_search import PineconeHybridSearchRetriever from langchain.retrievers.remote_retriever import RemoteLangChainRetriever +from langchain.retrievers.tfidf import TFIDFRetriever __all__ = [ "ChatGPTPluginRetriever", @@ -10,4 +11,5 @@ __all__ = [ "PineconeHybridSearchRetriever", "MetalRetriever", "ElasticSearchBM25Retriever", + "TFIDFRetriever", ] diff --git a/langchain/retrievers/elastic_search_bm25.py b/langchain/retrievers/elastic_search_bm25.py index 055e7c6e15..7e319d7370 100644 --- a/langchain/retrievers/elastic_search_bm25.py +++ b/langchain/retrievers/elastic_search_bm25.py @@ -49,29 +49,27 @@ class ElasticSearchBM25Retriever(BaseRetriever): es = Elasticsearch(elasticsearch_url) # Define the index settings and mappings - index_settings = { - "settings": { - "analysis": {"analyzer": {"default": {"type": "standard"}}}, - "similarity": { - "custom_bm25": { - "type": "BM25", - "k1": k1, - "b": b, - } - }, - }, - "mappings": { - "properties": { - "content": { - "type": "text", - "similarity": "custom_bm25", # Use the custom BM25 similarity - } + settings = { + "analysis": {"analyzer": {"default": {"type": "standard"}}}, + "similarity": { + "custom_bm25": { + "type": "BM25", + "k1": k1, + "b": b, } }, } + mappings = { + "properties": { + "content": { + "type": "text", + "similarity": "custom_bm25", # Use the custom BM25 similarity + } + } + } # Create the index with the specified settings and mappings - es.indices.create(index=index_name, body=index_settings) + es.indices.create(index=index_name, mappings=mappings, settings=settings) return cls(es, index_name) def add_texts( diff --git a/langchain/retrievers/tfidf.py b/langchain/retrievers/tfidf.py new file mode 100644 index 0000000000..2eef3cdd72 --- /dev/null +++ b/langchain/retrievers/tfidf.py @@ -0,0 +1,47 @@ +"""TF-IDF Retriever. + +Largely based on +https://github.com/asvskartheek/Text-Retrieval/blob/master/TF-IDF%20Search%20Engine%20(SKLEARN).ipynb""" +from typing import Any, List + +from pydantic import BaseModel + +from langchain.schema import BaseRetriever, Document + + +class TFIDFRetriever(BaseRetriever, BaseModel): + vectorizer: Any + docs: List[Document] + tfidf_array: Any + k: int = 4 + + class Config: + """Configuration for this pydantic object.""" + + arbitrary_types_allowed = True + + @classmethod + def from_texts(cls, texts: List[str], **kwargs: Any) -> "TFIDFRetriever": + from sklearn.feature_extraction.text import TfidfVectorizer + + vectorizer = TfidfVectorizer() + tfidf_array = vectorizer.fit_transform(texts) + docs = [Document(page_content=t) for t in texts] + return cls(vectorizer=vectorizer, docs=docs, tfidf_array=tfidf_array, **kwargs) + + def get_relevant_documents(self, query: str) -> List[Document]: + from sklearn.metrics.pairwise import cosine_similarity + + query_vec = self.vectorizer.transform( + [query] + ) # Ip -- (n_docs,x), Op -- (n_docs,n_Feats) + results = cosine_similarity(self.tfidf_array, query_vec).reshape( + (-1,) + ) # Op -- (n_docs,1) -- Cosine Sim with each doc + return_docs = [] + for i in results.argsort()[-self.k :][::-1]: + return_docs.append(self.docs[i]) + return return_docs + + async def aget_relevant_documents(self, query: str) -> List[Document]: + raise NotImplementedError