mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
182 lines
6.6 KiB
Python
182 lines
6.6 KiB
Python
|
"""Chain for applying removals of logical fallacies."""
|
||
|
from __future__ import annotations
|
||
|
|
||
|
from typing import Any, Dict, List, Optional
|
||
|
|
||
|
from langchain.callbacks.manager import CallbackManagerForChainRun
|
||
|
from langchain.chains.base import Chain
|
||
|
from langchain.chains.llm import LLMChain
|
||
|
from langchain.schema import BasePromptTemplate
|
||
|
from langchain.schema.language_model import BaseLanguageModel
|
||
|
|
||
|
from langchain_experimental.fallacy_removal.fallacies import FALLACIES
|
||
|
from langchain_experimental.fallacy_removal.models import LogicalFallacy
|
||
|
from langchain_experimental.fallacy_removal.prompts import (
|
||
|
FALLACY_CRITIQUE_PROMPT,
|
||
|
FALLACY_REVISION_PROMPT,
|
||
|
)
|
||
|
|
||
|
|
||
|
class FallacyChain(Chain):
|
||
|
"""Chain for applying logical fallacy evaluations, modeled after Constitutional AI \
|
||
|
and in same format, but applying logical fallacies as generalized rules to remove \
|
||
|
in output
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
from langchain.llms import OpenAI
|
||
|
from langchain.chains import LLMChain
|
||
|
from langchain_experimental.fallacy import FallacyChain
|
||
|
from langchain_experimental.fallacy_removal.models import LogicalFallacy
|
||
|
|
||
|
llm = OpenAI()
|
||
|
|
||
|
qa_prompt = PromptTemplate(
|
||
|
template="Q: {question} A:",
|
||
|
input_variables=["question"],
|
||
|
)
|
||
|
qa_chain = LLMChain(llm=llm, prompt=qa_prompt)
|
||
|
|
||
|
fallacy_chain = FallacyChain.from_llm(
|
||
|
llm=llm,
|
||
|
chain=qa_chain,
|
||
|
logical_fallacies=[
|
||
|
LogicalFallacy(
|
||
|
fallacy_critique_request="Tell if this answer meets criteria.",
|
||
|
fallacy_revision_request=\
|
||
|
"Give an answer that meets better criteria.",
|
||
|
)
|
||
|
],
|
||
|
)
|
||
|
|
||
|
fallacy_chain.run(question="How do I know if the earth is round?")
|
||
|
"""
|
||
|
|
||
|
chain: LLMChain
|
||
|
logical_fallacies: List[LogicalFallacy]
|
||
|
fallacy_critique_chain: LLMChain
|
||
|
fallacy_revision_chain: LLMChain
|
||
|
return_intermediate_steps: bool = False
|
||
|
|
||
|
@classmethod
|
||
|
def get_fallacies(cls, names: Optional[List[str]] = None) -> List[LogicalFallacy]:
|
||
|
if names is None:
|
||
|
return list(FALLACIES.values())
|
||
|
else:
|
||
|
return [FALLACIES[name] for name in names]
|
||
|
|
||
|
@classmethod
|
||
|
def from_llm(
|
||
|
cls,
|
||
|
llm: BaseLanguageModel,
|
||
|
chain: LLMChain,
|
||
|
fallacy_critique_prompt: BasePromptTemplate = FALLACY_CRITIQUE_PROMPT,
|
||
|
fallacy_revision_prompt: BasePromptTemplate = FALLACY_REVISION_PROMPT,
|
||
|
**kwargs: Any,
|
||
|
) -> "FallacyChain":
|
||
|
"""Create a chain from an LLM."""
|
||
|
fallacy_critique_chain = LLMChain(llm=llm, prompt=fallacy_critique_prompt)
|
||
|
fallacy_revision_chain = LLMChain(llm=llm, prompt=fallacy_revision_prompt)
|
||
|
return cls(
|
||
|
chain=chain,
|
||
|
fallacy_critique_chain=fallacy_critique_chain,
|
||
|
fallacy_revision_chain=fallacy_revision_chain,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
@property
|
||
|
def input_keys(self) -> List[str]:
|
||
|
"""Input keys."""
|
||
|
return self.chain.input_keys
|
||
|
|
||
|
@property
|
||
|
def output_keys(self) -> List[str]:
|
||
|
"""Output keys."""
|
||
|
if self.return_intermediate_steps:
|
||
|
return ["output", "fallacy_critiques_and_revisions", "initial_output"]
|
||
|
return ["output"]
|
||
|
|
||
|
def _call(
|
||
|
self,
|
||
|
inputs: Dict[str, Any],
|
||
|
run_manager: Optional[CallbackManagerForChainRun] = None,
|
||
|
) -> Dict[str, Any]:
|
||
|
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
|
||
|
response = self.chain.run(
|
||
|
**inputs,
|
||
|
callbacks=_run_manager.get_child("original"),
|
||
|
)
|
||
|
initial_response = response
|
||
|
input_prompt = self.chain.prompt.format(**inputs)
|
||
|
|
||
|
_run_manager.on_text(
|
||
|
text="Initial response: " + response + "\n\n",
|
||
|
verbose=self.verbose,
|
||
|
color="yellow",
|
||
|
)
|
||
|
fallacy_critiques_and_revisions = []
|
||
|
for logical_fallacy in self.logical_fallacies:
|
||
|
# Fallacy critique below
|
||
|
|
||
|
fallacy_raw_critique = self.fallacy_critique_chain.run(
|
||
|
input_prompt=input_prompt,
|
||
|
output_from_model=response,
|
||
|
fallacy_critique_request=logical_fallacy.fallacy_critique_request,
|
||
|
callbacks=_run_manager.get_child("fallacy_critique"),
|
||
|
)
|
||
|
fallacy_critique = self._parse_critique(
|
||
|
output_string=fallacy_raw_critique,
|
||
|
).strip()
|
||
|
|
||
|
# if fallacy critique contains "No fallacy critique needed" then done
|
||
|
if "no fallacy critique needed" in fallacy_critique.lower():
|
||
|
fallacy_critiques_and_revisions.append((fallacy_critique, ""))
|
||
|
continue
|
||
|
|
||
|
fallacy_revision = self.fallacy_revision_chain.run(
|
||
|
input_prompt=input_prompt,
|
||
|
output_from_model=response,
|
||
|
fallacy_critique_request=logical_fallacy.fallacy_critique_request,
|
||
|
fallacy_critique=fallacy_critique,
|
||
|
revision_request=logical_fallacy.fallacy_revision_request,
|
||
|
callbacks=_run_manager.get_child("fallacy_revision"),
|
||
|
).strip()
|
||
|
response = fallacy_revision
|
||
|
fallacy_critiques_and_revisions.append((fallacy_critique, fallacy_revision))
|
||
|
|
||
|
_run_manager.on_text(
|
||
|
text=f"Applying {logical_fallacy.name}..." + "\n\n",
|
||
|
verbose=self.verbose,
|
||
|
color="green",
|
||
|
)
|
||
|
|
||
|
_run_manager.on_text(
|
||
|
text="Logical Fallacy: " + fallacy_critique + "\n\n",
|
||
|
verbose=self.verbose,
|
||
|
color="blue",
|
||
|
)
|
||
|
|
||
|
_run_manager.on_text(
|
||
|
text="Updated response: " + fallacy_revision + "\n\n",
|
||
|
verbose=self.verbose,
|
||
|
color="yellow",
|
||
|
)
|
||
|
|
||
|
final_output: Dict[str, Any] = {"output": response}
|
||
|
if self.return_intermediate_steps:
|
||
|
final_output["initial_output"] = initial_response
|
||
|
final_output[
|
||
|
"fallacy_critiques_and_revisions"
|
||
|
] = fallacy_critiques_and_revisions
|
||
|
return final_output
|
||
|
|
||
|
@staticmethod
|
||
|
def _parse_critique(output_string: str) -> str:
|
||
|
if "Fallacy Revision request:" not in output_string:
|
||
|
return output_string
|
||
|
output_string = output_string.split("Fallacy Revision request:")[0]
|
||
|
if "\n\n" in output_string:
|
||
|
output_string = output_string.split("\n\n")[0]
|
||
|
return output_string
|