langchain/libs/experimental/langchain_experimental/rl_chain/__init__.py

64 lines
1.5 KiB
Python
Raw Normal View History

"""
**RL (Reinforcement Learning) Chain** leverages the `Vowpal Wabbit (VW)` models
for reinforcement learning with a context, with the goal of modifying
the prompt before the LLM call.
[Vowpal Wabbit](https://vowpalwabbit.org/) provides fast, efficient,
and flexible online machine learning techniques for reinforcement learning,
supervised learning, and more.
"""
infra: update mypy 1.10, ruff 0.5 (#23721) ```python """python scripts/update_mypy_ruff.py""" import glob import tomllib from pathlib import Path import toml import subprocess import re ROOT_DIR = Path(__file__).parents[1] def main(): for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True): print(path) with open(path, "rb") as f: pyproject = tomllib.load(f) try: pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = ( "^1.10" ) pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = ( "^0.5" ) except KeyError: continue with open(path, "w") as f: toml.dump(pyproject, f) cwd = "/".join(path.split("/")[:-1]) completed = subprocess.run( "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color", cwd=cwd, shell=True, capture_output=True, text=True, ) logs = completed.stdout.split("\n") to_ignore = {} for l in logs: if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l): path, line_no, error_type = re.match( "^(.*)\:(\d+)\: error:.*\[(.*)\]", l ).groups() if (path, line_no) in to_ignore: to_ignore[(path, line_no)].append(error_type) else: to_ignore[(path, line_no)] = [error_type] print(len(to_ignore)) for (error_path, line_no), error_types in to_ignore.items(): all_errors = ", ".join(error_types) full_path = f"{cwd}/{error_path}" try: with open(full_path, "r") as f: file_lines = f.readlines() except FileNotFoundError: continue file_lines[int(line_no) - 1] = ( file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n" ) with open(full_path, "w") as f: f.write("".join(file_lines)) subprocess.run( "poetry run ruff format .; poetry run ruff --select I --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) if __name__ == "__main__": main() ```
2024-07-03 17:33:27 +00:00
import logging
2023-09-11 16:16:08 +00:00
from langchain_experimental.rl_chain.base import (
AutoSelectionScorer,
BasedOn,
Embed,
Embedder,
Policy,
SelectionScorer,
ToSelectFrom,
VwPolicy,
)
from langchain_experimental.rl_chain.helpers import embed, stringify_embedding
2023-09-11 16:16:08 +00:00
from langchain_experimental.rl_chain.pick_best_chain import (
PickBest,
PickBestEvent,
2023-09-04 11:36:47 +00:00
PickBestFeatureEmbedder,
2023-09-04 22:08:46 +00:00
PickBestRandomPolicy,
PickBestSelected,
)
2023-08-28 12:13:23 +00:00
def configure_logger() -> None:
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
ch = logging.StreamHandler()
formatter = logging.Formatter(
"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
ch.setFormatter(formatter)
ch.setLevel(logging.INFO)
logger.addHandler(ch)
configure_logger()
__all__ = [
"PickBest",
"PickBestEvent",
"PickBestSelected",
2023-09-04 11:36:47 +00:00
"PickBestFeatureEmbedder",
2023-09-04 22:08:46 +00:00
"PickBestRandomPolicy",
"Embed",
"BasedOn",
"ToSelectFrom",
"SelectionScorer",
"AutoSelectionScorer",
"Embedder",
"Policy",
"VwPolicy",
"embed",
"stringify_embedding",
]