langchain/libs/community/langchain_community/document_transformers/markdownify.py

84 lines
3.1 KiB
Python
Raw Normal View History

community: Add MarkdownifyTransformer to langchain_community.document_transformers (#21247) - Added new document_transformer: MarkdonifyTransformer, that uses `markdonify` package with customizable options to convert HTML to Markdown. It's similar to Html2TextTransformer, but has more flexible options and also I've noticed that sometimes MarkdownifyTransformer performs better than html2text one, so that's why I use markdownify on my project. - Added docs and tests - Usage: ```python from langchain_community.document_transformers import MarkdownifyTransformer markdownify = MarkdownifyTransformer() docs_transform = markdownify.transform_documents(docs) ``` - Example of better performance on simple task, that I've noticed: ``` <html> <head><title>Reports on product movement</title></head> <body> <p data-block-key="2wst7">The reports on product movement will be useful for forming supplier orders and controlling outcomes.</p> </body> ``` **Html2TextTransformer**: ```python [Document(page_content='The reports on product movement will be useful for forming supplier orders and\ncontrolling outcomes.\n\n')] # Here we can see 'and\ncontrolling', which has extra '\n' in it ``` **MarkdownifyTranformer**: ```python [Document(page_content='Reports on product movement\n\nThe reports on product movement will be useful for forming supplier orders and controlling outcomes.')] ``` --------- Co-authored-by: Sokolov Fedor <f.sokolov@sokolov-macbook.bbrouter> Co-authored-by: Harrison Chase <hw.chase.17@gmail.com> Co-authored-by: Sokolov Fedor <f.sokolov@sokolov-macbook.local> Co-authored-by: Sokolov Fedor <f.sokolov@192.168.1.6>
2024-05-08 21:45:13 +00:00
import re
from typing import Any, List, Optional, Sequence, Union
from langchain_core.documents import BaseDocumentTransformer, Document
class MarkdownifyTransformer(BaseDocumentTransformer):
"""Converts HTML documents to Markdown format with customizable options for handling
links, images, other tags and heading styles using the markdownify library.
Arguments:
strip: A list of tags to strip. This option can't be used with the convert option.
convert: A list of tags to convert. This option can't be used with the strip option.
autolinks: A boolean indicating whether the "automatic link" style should be used when a a tag's contents match its href. Defaults to True.
heading_style: Defines how headings should be converted. Accepted values are ATX, ATX_CLOSED, SETEXT, and UNDERLINED (which is an alias for SETEXT). Defaults to ATX.
**kwargs: Additional options to pass to markdownify.
Example:
.. code-block:: python
from langchain_community.document_transformers import MarkdownifyTransformer
markdownify = MarkdownifyTransformer()
docs_transform = markdownify.transform_documents(docs)
More configuration options can be found at the markdownify GitHub page:
https://github.com/matthewwithanm/python-markdownify
""" # noqa: E501
def __init__(
self,
strip: Optional[Union[str, List[str]]] = None,
convert: Optional[Union[str, List[str]]] = None,
autolinks: bool = True,
heading_style: str = "ATX",
**kwargs: Any,
) -> None:
self.strip = [strip] if isinstance(strip, str) else strip
self.convert = [convert] if isinstance(convert, str) else convert
self.autolinks = autolinks
self.heading_style = heading_style
self.additional_options = kwargs
def transform_documents(
self,
documents: Sequence[Document],
**kwargs: Any,
) -> Sequence[Document]:
try:
from markdownify import markdownify
except ImportError:
raise ImportError(
"""markdownify package not found, please
install it with `pip install markdownify`"""
)
converted_documents = []
for doc in documents:
markdown_content = (
markdownify(
html=doc.page_content,
strip=self.strip,
convert=self.convert,
autolinks=self.autolinks,
heading_style=self.heading_style,
**self.additional_options,
)
.replace("\xa0", " ")
.strip()
)
cleaned_markdown = re.sub(r"\n\s*\n", "\n\n", markdown_content)
converted_documents.append(
Document(cleaned_markdown, metadata=doc.metadata)
)
return converted_documents
async def atransform_documents(
self,
documents: Sequence[Document],
**kwargs: Any,
) -> Sequence[Document]:
raise NotImplementedError