langchain/libs/partners/elasticsearch/README.md

82 lines
2.4 KiB
Markdown
Raw Normal View History

# langchain-elasticsearch
This package contains the LangChain integration with Elasticsearch.
## Installation
```bash
pip install -U langchain-elasticsearch
```
## Elasticsearch setup
### Elastic Cloud
You need a running Elasticsearch deployment. The easiest way to start one is through [Elastic Cloud](https://cloud.elastic.co/).
You can sign up for a [free trial](https://www.elastic.co/cloud/cloud-trial-overview).
1. [Create a deployment](https://www.elastic.co/guide/en/cloud/current/ec-create-deployment.html)
2. Get your Cloud ID:
1. In the [Elastic Cloud console](https://cloud.elastic.co), click "Manage" next to your deployment
2. Copy the Cloud ID and paste it into the `es_cloud_id` parameter below
3. Create an API key:
1. In the [Elastic Cloud console](https://cloud.elastic.co), click "Open" next to your deployment
2. In the left-hand side menu, go to "Stack Management", then to "API Keys"
3. Click "Create API key"
4. Enter a name for the API key and click "Create"
5. Copy the API key and paste it into the `es_api_key` parameter below
### Elastic Cloud
Alternatively, you can run Elasticsearch via Docker as described in the [docs](https://python.langchain.com/docs/integrations/vectorstores/elasticsearch).
## Usage
### ElasticsearchStore
The `ElasticsearchStore` class exposes Elasticsearch as a vector store.
```python
from langchain_elasticsearch import ElasticsearchStore
embeddings = ... # use a LangChain Embeddings class or ElasticsearchEmbeddings
vectorstore = ElasticsearchStore(
es_cloud_id="your-cloud-id",
es_api_key="your-api-key",
index_name="your-index-name",
embeddings=embeddings,
)
```
### ElasticsearchEmbeddings
The `ElasticsearchEmbeddings` class provides an interface to generate embeddings using a model
deployed in an Elasticsearch cluster.
```python
from langchain_elasticsearch import ElasticsearchEmbeddings
embeddings = ElasticsearchEmbeddings.from_credentials(
model_id="your-model-id",
input_field="your-input-field",
es_cloud_id="your-cloud-id",
es_api_key="your-api-key",
)
```
### ElasticsearchChatMessageHistory
The `ElasticsearchChatMessageHistory` class stores chat histories in Elasticsearch.
```python
from langchain_elasticsearch import ElasticsearchChatMessageHistory
chat_history = ElasticsearchChatMessageHistory(
index="your-index-name",
session_id="your-session-id",
es_cloud_id="your-cloud-id",
es_api_key="your-api-key",
)
```