mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
74 lines
2.4 KiB
Python
74 lines
2.4 KiB
Python
|
from typing import Any, Dict, List, Optional
|
||
|
|
||
|
import requests
|
||
|
from langchain_core.embeddings import Embeddings
|
||
|
from langchain_core.pydantic_v1 import BaseModel, root_validator
|
||
|
from langchain_core.utils import get_from_dict_or_env
|
||
|
|
||
|
JINA_API_URL: str = "https://api.jina.ai/v1/embeddings"
|
||
|
|
||
|
|
||
|
class JinaEmbeddings(BaseModel, Embeddings):
|
||
|
"""Jina embedding models."""
|
||
|
|
||
|
session: Any #: :meta private:
|
||
|
model_name: str = "jina-embeddings-v2-base-en"
|
||
|
jina_api_key: Optional[str] = None
|
||
|
|
||
|
@root_validator()
|
||
|
def validate_environment(cls, values: Dict) -> Dict:
|
||
|
"""Validate that auth token exists in environment."""
|
||
|
try:
|
||
|
jina_api_key = get_from_dict_or_env(values, "jina_api_key", "JINA_API_KEY")
|
||
|
except ValueError as original_exc:
|
||
|
try:
|
||
|
jina_api_key = get_from_dict_or_env(
|
||
|
values, "jina_auth_token", "JINA_AUTH_TOKEN"
|
||
|
)
|
||
|
except ValueError:
|
||
|
raise original_exc
|
||
|
session = requests.Session()
|
||
|
session.headers.update(
|
||
|
{
|
||
|
"Authorization": f"Bearer {jina_api_key}",
|
||
|
"Accept-Encoding": "identity",
|
||
|
"Content-type": "application/json",
|
||
|
}
|
||
|
)
|
||
|
values["session"] = session
|
||
|
return values
|
||
|
|
||
|
def _embed(self, texts: List[str]) -> List[List[float]]:
|
||
|
# Call Jina AI Embedding API
|
||
|
resp = self.session.post( # type: ignore
|
||
|
JINA_API_URL, json={"input": texts, "model": self.model_name}
|
||
|
).json()
|
||
|
if "data" not in resp:
|
||
|
raise RuntimeError(resp["detail"])
|
||
|
|
||
|
embeddings = resp["data"]
|
||
|
|
||
|
# Sort resulting embeddings by index
|
||
|
sorted_embeddings = sorted(embeddings, key=lambda e: e["index"]) # type: ignore
|
||
|
|
||
|
# Return just the embeddings
|
||
|
return [result["embedding"] for result in sorted_embeddings]
|
||
|
|
||
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||
|
"""Call out to Jina's embedding endpoint.
|
||
|
Args:
|
||
|
texts: The list of texts to embed.
|
||
|
Returns:
|
||
|
List of embeddings, one for each text.
|
||
|
"""
|
||
|
return self._embed(texts)
|
||
|
|
||
|
def embed_query(self, text: str) -> List[float]:
|
||
|
"""Call out to Jina's embedding endpoint.
|
||
|
Args:
|
||
|
text: The text to embed.
|
||
|
Returns:
|
||
|
Embeddings for the text.
|
||
|
"""
|
||
|
return self._embed([text])[0]
|