2024-05-01 14:41:44 +00:00
|
|
|
"""Wrapper for Rememberizer APIs."""
|
infra: update mypy 1.10, ruff 0.5 (#23721)
```python
"""python scripts/update_mypy_ruff.py"""
import glob
import tomllib
from pathlib import Path
import toml
import subprocess
import re
ROOT_DIR = Path(__file__).parents[1]
def main():
for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True):
print(path)
with open(path, "rb") as f:
pyproject = tomllib.load(f)
try:
pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = (
"^1.10"
)
pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = (
"^0.5"
)
except KeyError:
continue
with open(path, "w") as f:
toml.dump(pyproject, f)
cwd = "/".join(path.split("/")[:-1])
completed = subprocess.run(
"poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color",
cwd=cwd,
shell=True,
capture_output=True,
text=True,
)
logs = completed.stdout.split("\n")
to_ignore = {}
for l in logs:
if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l):
path, line_no, error_type = re.match(
"^(.*)\:(\d+)\: error:.*\[(.*)\]", l
).groups()
if (path, line_no) in to_ignore:
to_ignore[(path, line_no)].append(error_type)
else:
to_ignore[(path, line_no)] = [error_type]
print(len(to_ignore))
for (error_path, line_no), error_types in to_ignore.items():
all_errors = ", ".join(error_types)
full_path = f"{cwd}/{error_path}"
try:
with open(full_path, "r") as f:
file_lines = f.readlines()
except FileNotFoundError:
continue
file_lines[int(line_no) - 1] = (
file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n"
)
with open(full_path, "w") as f:
f.write("".join(file_lines))
subprocess.run(
"poetry run ruff format .; poetry run ruff --select I --fix .",
cwd=cwd,
shell=True,
capture_output=True,
text=True,
)
if __name__ == "__main__":
main()
```
2024-07-03 17:33:27 +00:00
|
|
|
|
2024-09-13 21:38:45 +00:00
|
|
|
from typing import Any, Dict, List, Optional, cast
|
2024-05-01 14:41:44 +00:00
|
|
|
|
|
|
|
import requests
|
|
|
|
from langchain_core.documents import Document
|
|
|
|
from langchain_core.utils import get_from_dict_or_env
|
2024-09-13 21:38:45 +00:00
|
|
|
from pydantic import BaseModel, model_validator
|
2024-05-01 14:41:44 +00:00
|
|
|
|
|
|
|
|
|
|
|
class RememberizerAPIWrapper(BaseModel):
|
|
|
|
"""Wrapper for Rememberizer APIs."""
|
|
|
|
|
|
|
|
top_k_results: int = 10
|
|
|
|
rememberizer_api_key: Optional[str] = None
|
|
|
|
|
2024-09-13 21:38:45 +00:00
|
|
|
@model_validator(mode="before")
|
|
|
|
@classmethod
|
|
|
|
def validate_environment(cls, values: Dict) -> Any:
|
2024-05-01 14:41:44 +00:00
|
|
|
"""Validate that api key in environment."""
|
|
|
|
rememberizer_api_key = get_from_dict_or_env(
|
|
|
|
values, "rememberizer_api_key", "REMEMBERIZER_API_KEY"
|
|
|
|
)
|
|
|
|
values["rememberizer_api_key"] = rememberizer_api_key
|
|
|
|
|
|
|
|
return values
|
|
|
|
|
|
|
|
def search(self, query: str) -> dict:
|
|
|
|
"""Search for a query in the Rememberizer API."""
|
|
|
|
url = f"https://api.rememberizer.ai/api/v1/documents/search?q={query}&n={self.top_k_results}"
|
2024-06-11 17:34:01 +00:00
|
|
|
response = requests.get(
|
|
|
|
url, headers={"x-api-key": cast(str, self.rememberizer_api_key)}
|
|
|
|
)
|
2024-05-01 14:41:44 +00:00
|
|
|
data = response.json()
|
|
|
|
|
|
|
|
if response.status_code != 200:
|
|
|
|
raise ValueError(f"API Error: {data}")
|
|
|
|
|
|
|
|
matched_chunks = data.get("matched_chunks", [])
|
|
|
|
return matched_chunks
|
|
|
|
|
|
|
|
def load(self, query: str) -> List[Document]:
|
|
|
|
matched_chunks = self.search(query)
|
|
|
|
docs = []
|
|
|
|
for matched_chunk in matched_chunks:
|
|
|
|
docs.append(
|
|
|
|
Document(
|
|
|
|
page_content=matched_chunk["matched_content"],
|
|
|
|
metadata=matched_chunk["document"],
|
|
|
|
)
|
|
|
|
)
|
|
|
|
return docs
|