2023-02-14 05:20:19 +00:00
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
2023-04-18 03:25:32 +00:00
"# ForefrontAI\n",
"\n",
"\n",
"The `Forefront` platform gives you the ability to fine-tune and use [open source large language models](https://docs.forefront.ai/forefront/master/models).\n",
"\n",
"This notebook goes over how to use Langchain with [ForefrontAI](https://www.forefront.ai/).\n"
2023-02-14 05:20:19 +00:00
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Imports"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from langchain.llms import ForefrontAI\n",
"from langchain import PromptTemplate, LLMChain"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Set the Environment API Key\n",
"Make sure to get your API key from ForefrontAI. You are given a 5 day free trial to test different models."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
2023-04-18 03:25:32 +00:00
"# get a new token: https://docs.forefront.ai/forefront/api-reference/authentication\n",
"\n",
"from getpass import getpass\n",
"\n",
"FOREFRONTAI_API_KEY = getpass()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"os.environ[\"FOREFRONTAI_API_KEY\"] = FOREFRONTAI_API_KEY"
2023-02-14 05:20:19 +00:00
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create the ForefrontAI instance\n",
"You can specify different parameters such as the model endpoint url, length, temperature, etc. You must provide an endpoint url."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"llm = ForefrontAI(endpoint_url=\"YOUR ENDPOINT URL HERE\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create a Prompt Template\n",
"We will create a prompt template for Question and Answer."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"template = \"\"\"Question: {question}\n",
"\n",
"Answer: Let's think step by step.\"\"\"\n",
"\n",
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initiate the LLMChain"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"llm_chain = LLMChain(prompt=prompt, llm=llm)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Run the LLMChain\n",
"Provide a question and run the LLMChain."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"question = \"What NFL team won the Super Bowl in the year Justin Beiber was born?\"\n",
"\n",
"llm_chain.run(question)"
]
}
],
"metadata": {
"kernelspec": {
2023-04-18 03:25:32 +00:00
"display_name": "Python 3 (ipykernel)",
2023-02-14 05:20:19 +00:00
"language": "python",
"name": "python3"
},
"language_info": {
2023-04-18 03:25:32 +00:00
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
2023-02-14 05:20:19 +00:00
"name": "python",
2023-04-18 03:25:32 +00:00
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
2023-02-14 05:20:19 +00:00
},
"vscode": {
"interpreter": {
"hash": "a0a0263b650d907a3bfe41c0f8d6a63a071b884df3cfdc1579f00cdc1aed6b03"
}
}
},
"nbformat": 4,
2023-04-18 03:25:32 +00:00
"nbformat_minor": 4
2023-02-14 05:20:19 +00:00
}