2023-02-23 15:37:15 +00:00
|
|
|
{
|
|
|
|
"cells": [
|
|
|
|
{
|
|
|
|
"cell_type": "markdown",
|
|
|
|
"metadata": {},
|
|
|
|
"source": [
|
2023-04-18 03:25:32 +00:00
|
|
|
"# DeepInfra\n",
|
|
|
|
"\n",
|
|
|
|
"`DeepInfra` provides [several LLMs](https://deepinfra.com/models).\n",
|
|
|
|
"\n",
|
2023-02-23 15:37:15 +00:00
|
|
|
"This notebook goes over how to use Langchain with [DeepInfra](https://deepinfra.com)."
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "markdown",
|
|
|
|
"metadata": {},
|
|
|
|
"source": [
|
|
|
|
"## Imports"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2023-04-18 03:25:32 +00:00
|
|
|
"execution_count": 1,
|
|
|
|
"metadata": {
|
|
|
|
"tags": []
|
|
|
|
},
|
2023-02-23 15:37:15 +00:00
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"import os\n",
|
|
|
|
"from langchain.llms import DeepInfra\n",
|
|
|
|
"from langchain import PromptTemplate, LLMChain"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "markdown",
|
|
|
|
"metadata": {},
|
|
|
|
"source": [
|
|
|
|
"## Set the Environment API Key\n",
|
2023-04-18 03:25:32 +00:00
|
|
|
"Make sure to get your API key from DeepInfra. You have to [Login](https://deepinfra.com/login?from=%2Fdash) and get a new token.\n",
|
|
|
|
"\n",
|
|
|
|
"You are given a 1 hour free of serverless GPU compute to test different models. (see [here](https://github.com/deepinfra/deepctl#deepctl))\n",
|
2023-02-23 15:37:15 +00:00
|
|
|
"You can print your token with `deepctl auth token`"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2023-04-18 03:25:32 +00:00
|
|
|
"execution_count": 2,
|
|
|
|
"metadata": {
|
|
|
|
"tags": []
|
|
|
|
},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"name": "stdin",
|
|
|
|
"output_type": "stream",
|
|
|
|
"text": [
|
|
|
|
" ········\n"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
|
|
|
"# get a new token: https://deepinfra.com/login?from=%2Fdash\n",
|
|
|
|
"\n",
|
|
|
|
"from getpass import getpass\n",
|
|
|
|
"\n",
|
|
|
|
"DEEPINFRA_API_TOKEN = getpass()"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 3,
|
|
|
|
"metadata": {
|
|
|
|
"tags": []
|
|
|
|
},
|
2023-02-23 15:37:15 +00:00
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
2023-04-18 03:25:32 +00:00
|
|
|
"os.environ[\"DEEPINFRA_API_TOKEN\"] = DEEPINFRA_API_TOKEN"
|
2023-02-23 15:37:15 +00:00
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "markdown",
|
|
|
|
"metadata": {},
|
|
|
|
"source": [
|
|
|
|
"## Create the DeepInfra instance\n",
|
2023-04-18 03:25:32 +00:00
|
|
|
"Make sure to deploy your model first via `deepctl deploy create -m google/flat-t5-xl` (see [here](https://github.com/deepinfra/deepctl#deepctl))"
|
2023-02-23 15:37:15 +00:00
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": null,
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"llm = DeepInfra(model_id=\"DEPLOYED MODEL ID\")"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "markdown",
|
|
|
|
"metadata": {},
|
|
|
|
"source": [
|
|
|
|
"## Create a Prompt Template\n",
|
|
|
|
"We will create a prompt template for Question and Answer."
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": null,
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"template = \"\"\"Question: {question}\n",
|
|
|
|
"\n",
|
|
|
|
"Answer: Let's think step by step.\"\"\"\n",
|
|
|
|
"\n",
|
|
|
|
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "markdown",
|
|
|
|
"metadata": {},
|
|
|
|
"source": [
|
|
|
|
"## Initiate the LLMChain"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": null,
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"llm_chain = LLMChain(prompt=prompt, llm=llm)"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "markdown",
|
|
|
|
"metadata": {},
|
|
|
|
"source": [
|
|
|
|
"## Run the LLMChain\n",
|
|
|
|
"Provide a question and run the LLMChain."
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": null,
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"question = \"What NFL team won the Super Bowl in 2015?\"\n",
|
|
|
|
"\n",
|
|
|
|
"llm_chain.run(question)"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"metadata": {
|
|
|
|
"kernelspec": {
|
2023-04-18 03:25:32 +00:00
|
|
|
"display_name": "Python 3 (ipykernel)",
|
2023-02-23 15:37:15 +00:00
|
|
|
"language": "python",
|
|
|
|
"name": "python3"
|
|
|
|
},
|
|
|
|
"language_info": {
|
2023-04-18 03:25:32 +00:00
|
|
|
"codemirror_mode": {
|
|
|
|
"name": "ipython",
|
|
|
|
"version": 3
|
|
|
|
},
|
|
|
|
"file_extension": ".py",
|
|
|
|
"mimetype": "text/x-python",
|
2023-02-23 15:37:15 +00:00
|
|
|
"name": "python",
|
2023-04-18 03:25:32 +00:00
|
|
|
"nbconvert_exporter": "python",
|
|
|
|
"pygments_lexer": "ipython3",
|
|
|
|
"version": "3.10.6"
|
2023-02-23 15:37:15 +00:00
|
|
|
},
|
|
|
|
"vscode": {
|
|
|
|
"interpreter": {
|
|
|
|
"hash": "a0a0263b650d907a3bfe41c0f8d6a63a071b884df3cfdc1579f00cdc1aed6b03"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"nbformat": 4,
|
2023-04-18 03:25:32 +00:00
|
|
|
"nbformat_minor": 4
|
2023-02-23 15:37:15 +00:00
|
|
|
}
|