langchain/docs/extras/integrations/llms/modal.ipynb

186 lines
5.2 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Modal\n",
"\n",
"The [Modal cloud platform](https://modal.com/docs/guide) provides convenient, on-demand access to serverless cloud compute from Python scripts on your local computer. \n",
"Use `modal` to run your own custom LLM models instead of depending on LLM APIs.\n",
"\n",
"This example goes over how to use LangChain to interact with a `modal` HTTPS [web endpoint](https://modal.com/docs/guide/webhooks).\n",
"\n",
"[_Question-answering with LangChain_](https://modal.com/docs/guide/ex/potus_speech_qanda) is another example of how to use LangChain alonside `Modal`. In that example, Modal runs the LangChain application end-to-end and uses OpenAI as its LLM API."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"!pip install modal"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Launching login page in your browser window...\n",
"If this is not showing up, please copy this URL into your web browser manually:\n",
"https://modal.com/token-flow/tf-Dzm3Y01234mqmm1234Vcu3\n"
]
}
],
"source": [
"# Register an account with Modal and get a new token.\n",
"\n",
"!modal token new"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The [`langchain.llms.modal.Modal`](https://github.com/hwchase17/langchain/blame/master/langchain/llms/modal.py) integration class requires that you deploy a Modal application with a web endpoint that complies with the following JSON interface:\n",
"\n",
"1. The LLM prompt is accepted as a `str` value under the key `\"prompt\"`\n",
"2. The LLM response returned as a `str` value under the key `\"prompt\"`\n",
"\n",
"**Example request JSON:**\n",
"\n",
"```json\n",
"{\n",
" \"prompt\": \"Identify yourself, bot!\",\n",
" \"extra\": \"args are allowed\",\n",
"}\n",
"```\n",
"\n",
"**Example response JSON:**\n",
"\n",
"```json\n",
"{\n",
" \"prompt\": \"This is the LLM speaking\",\n",
"}\n",
"```\n",
"\n",
"An example 'dummy' Modal web endpoint function fulfilling this interface would be\n",
"\n",
"```python\n",
"...\n",
"...\n",
"\n",
"class Request(BaseModel):\n",
" prompt: str\n",
"\n",
"@stub.function()\n",
"@modal.web_endpoint(method=\"POST\")\n",
"def web(request: Request):\n",
" _ = request # ignore input\n",
" return {\"prompt\": \"hello world\"}\n",
"```\n",
"\n",
"* See Modal's [web endpoints](https://modal.com/docs/guide/webhooks#passing-arguments-to-web-endpoints) guide for the basics of setting up an endpoint that fulfils this interface.\n",
"* See Modal's ['Run Falcon-40B with AutoGPTQ'](https://modal.com/docs/guide/ex/falcon_gptq) open-source LLM example as a starting point for your custom LLM!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Once you have a deployed Modal web endpoint, you can pass its URL into the `langchain.llms.modal.Modal` LLM class. This class can then function as a building block in your chain."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.llms import Modal\n",
"from langchain.prompts import PromptTemplate\n",
"from langchain.chains import LLMChain"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"template = \"\"\"Question: {question}\n",
"\n",
"Answer: Let's think step by step.\"\"\"\n",
"\n",
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"endpoint_url = \"https://ecorp--custom-llm-endpoint.modal.run\" # REPLACE ME with your deployed Modal web endpoint's URL\n",
"llm = Modal(endpoint_url=endpoint_url)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"llm_chain = LLMChain(prompt=prompt, llm=llm)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"question = \"What NFL team won the Super Bowl in the year Justin Beiber was born?\"\n",
"\n",
"llm_chain.run(question)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
},
"vscode": {
"interpreter": {
"hash": "a0a0263b650d907a3bfe41c0f8d6a63a071b884df3cfdc1579f00cdc1aed6b03"
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}