langchain/cookbook/together_ai.ipynb

157 lines
5.5 KiB
Plaintext
Raw Normal View History

2024-01-10 22:28:05 +00:00
{
"cells": [
{
"cell_type": "markdown",
"id": "0fc0309d-4d49-4bb5-bec0-bd92c6fddb28",
"metadata": {},
"source": [
"## Together AI + RAG\n",
" \n",
"[Together AI](https://python.langchain.com/docs/integrations/llms/together) has a broad set of OSS LLMs via inference API.\n",
"\n",
"See [here](https://docs.together.ai/docs/inference-models). We use `\"mistralai/Mixtral-8x7B-Instruct-v0.1` for RAG on the Mixtral paper.\n",
2024-01-10 22:28:05 +00:00
"\n",
"Download the paper:\n",
"https://arxiv.org/pdf/2401.04088.pdf"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d12fb75a-f707-48d5-82a5-efe2d041813c",
"metadata": {},
"outputs": [],
"source": [
"! pip install --quiet pypdf chromadb tiktoken openai langchain-together"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9ab49327-0532-4480-804c-d066c302a322",
"metadata": {},
"outputs": [],
"source": [
"# Load\n",
"from langchain_community.document_loaders import PyPDFLoader\n",
"\n",
"loader = PyPDFLoader(\"~/Desktop/mixtral.pdf\")\n",
"data = loader.load()\n",
"\n",
"# Split\n",
"from langchain_text_splitters import RecursiveCharacterTextSplitter\n",
2024-01-10 22:28:05 +00:00
"\n",
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=0)\n",
"all_splits = text_splitter.split_documents(data)\n",
"\n",
"# Add to vectorDB\n",
"from langchain_community.embeddings import OpenAIEmbeddings\n",
"from langchain_community.vectorstores import Chroma\n",
"\n",
"\"\"\"\n",
"from langchain_together.embeddings import TogetherEmbeddings\n",
"embeddings = TogetherEmbeddings(model=\"togethercomputer/m2-bert-80M-8k-retrieval\")\n",
"\"\"\"\n",
"vectorstore = Chroma.from_documents(\n",
" documents=all_splits,\n",
" collection_name=\"rag-chroma\",\n",
" embedding=OpenAIEmbeddings(),\n",
")\n",
"\n",
"retriever = vectorstore.as_retriever()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "4efaddd9-3dbb-455c-ba54-0ad7f2d2ce0f",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.pydantic_v1 import BaseModel\n",
"from langchain_core.runnables import RunnableParallel, RunnablePassthrough\n",
"\n",
"# RAG prompt\n",
"template = \"\"\"Answer the question based only on the following context:\n",
"{context}\n",
"\n",
"Question: {question}\n",
"\"\"\"\n",
"prompt = ChatPromptTemplate.from_template(template)\n",
"\n",
"# LLM\n",
"from langchain_together import Together\n",
2024-01-10 22:28:05 +00:00
"\n",
"llm = Together(\n",
" model=\"mistralai/Mixtral-8x7B-Instruct-v0.1\",\n",
" temperature=0.0,\n",
" max_tokens=2000,\n",
" top_k=1,\n",
")\n",
"\n",
"# RAG chain\n",
"chain = (\n",
" RunnableParallel({\"context\": retriever, \"question\": RunnablePassthrough()})\n",
" | prompt\n",
" | llm\n",
" | StrOutputParser()\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "88b1ee51-1b0f-4ebf-bb32-e50e843f0eeb",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'\\nAnswer: The architectural details of Mixtral are as follows:\\n- Dimension (dim): 4096\\n- Number of layers (n\\\\_layers): 32\\n- Dimension of each head (head\\\\_dim): 128\\n- Hidden dimension (hidden\\\\_dim): 14336\\n- Number of heads (n\\\\_heads): 32\\n- Number of kv heads (n\\\\_kv\\\\_heads): 8\\n- Context length (context\\\\_len): 32768\\n- Vocabulary size (vocab\\\\_size): 32000\\n- Number of experts (num\\\\_experts): 8\\n- Number of top k experts (top\\\\_k\\\\_experts): 2\\n\\nMixtral is based on a transformer architecture and uses the same modifications as described in [18], with the notable exceptions that Mixtral supports a fully dense context length of 32k tokens, and the feedforward block picks from a set of 8 distinct groups of parameters. At every layer, for every token, a router network chooses two of these groups (the “experts”) to process the token and combine their output additively. This technique increases the number of parameters of a model while controlling cost and latency, as the model only uses a fraction of the total set of parameters per token. Mixtral is pretrained with multilingual data using a context size of 32k tokens. It either matches or exceeds the performance of Llama 2 70B and GPT-3.5, over several benchmarks. In particular, Mixtral vastly outperforms Llama 2 70B on mathematics, code generation, and multilingual benchmarks.'"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain.invoke(\"What are the Architectural details of Mixtral?\")"
]
},
{
"cell_type": "markdown",
"id": "755cf871-26b7-4e30-8b91-9ffd698470f4",
"metadata": {},
"source": [
"Trace: \n",
"\n",
"https://smith.langchain.com/public/935fd642-06a6-4b42-98e3-6074f93115cd/r"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.6"
2024-01-10 22:28:05 +00:00
}
},
"nbformat": 4,
"nbformat_minor": 5
}