langchain/tests/unit_tests/retrievers/test_tfidf.py

35 lines
1.2 KiB
Python
Raw Normal View History

import pytest
from langchain.retrievers.tfidf import TFIDFRetriever
from langchain.schema import Document
@pytest.mark.requires("sklearn")
def test_from_texts() -> None:
input_texts = ["I have a pen.", "Do you have a pen?", "I have a bag."]
tfidf_retriever = TFIDFRetriever.from_texts(texts=input_texts)
assert len(tfidf_retriever.docs) == 3
assert tfidf_retriever.tfidf_array.toarray().shape == (3, 5)
@pytest.mark.requires("sklearn")
def test_from_texts_with_tfidf_params() -> None:
input_texts = ["I have a pen.", "Do you have a pen?", "I have a bag."]
tfidf_retriever = TFIDFRetriever.from_texts(
texts=input_texts, tfidf_params={"min_df": 2}
)
# should count only multiple words (have, pan)
assert tfidf_retriever.tfidf_array.toarray().shape == (3, 2)
@pytest.mark.requires("sklearn")
def test_from_documents() -> None:
input_docs = [
Document(page_content="I have a pen."),
Document(page_content="Do you have a pen?"),
Document(page_content="I have a bag."),
]
tfidf_retriever = TFIDFRetriever.from_documents(documents=input_docs)
assert len(tfidf_retriever.docs) == 3
assert tfidf_retriever.tfidf_array.toarray().shape == (3, 5)