mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
142 lines
6.1 KiB
Python
142 lines
6.1 KiB
Python
|
"""Document transformers that use OpenAI Functions models"""
|
||
|
from typing import Any, Dict, Optional, Sequence, Type, Union
|
||
|
|
||
|
from langchain_core.documents import BaseDocumentTransformer, Document
|
||
|
from langchain_core.language_models import BaseLanguageModel
|
||
|
from langchain_core.prompts import ChatPromptTemplate
|
||
|
from langchain_core.pydantic_v1 import BaseModel
|
||
|
|
||
|
|
||
|
class OpenAIMetadataTagger(BaseDocumentTransformer, BaseModel):
|
||
|
"""Extract metadata tags from document contents using OpenAI functions.
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
from langchain_community.chat_models import ChatOpenAI
|
||
|
from langchain_community.document_transformers import OpenAIMetadataTagger
|
||
|
from langchain_core.documents import Document
|
||
|
|
||
|
schema = {
|
||
|
"properties": {
|
||
|
"movie_title": { "type": "string" },
|
||
|
"critic": { "type": "string" },
|
||
|
"tone": {
|
||
|
"type": "string",
|
||
|
"enum": ["positive", "negative"]
|
||
|
},
|
||
|
"rating": {
|
||
|
"type": "integer",
|
||
|
"description": "The number of stars the critic rated the movie"
|
||
|
}
|
||
|
},
|
||
|
"required": ["movie_title", "critic", "tone"]
|
||
|
}
|
||
|
|
||
|
# Must be an OpenAI model that supports functions
|
||
|
llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613")
|
||
|
tagging_chain = create_tagging_chain(schema, llm)
|
||
|
document_transformer = OpenAIMetadataTagger(tagging_chain=tagging_chain)
|
||
|
original_documents = [
|
||
|
Document(page_content="Review of The Bee Movie\nBy Roger Ebert\n\nThis is the greatest movie ever made. 4 out of 5 stars."),
|
||
|
Document(page_content="Review of The Godfather\nBy Anonymous\n\nThis movie was super boring. 1 out of 5 stars.", metadata={"reliable": False}),
|
||
|
]
|
||
|
|
||
|
enhanced_documents = document_transformer.transform_documents(original_documents)
|
||
|
""" # noqa: E501
|
||
|
|
||
|
tagging_chain: Any
|
||
|
"""The chain used to extract metadata from each document."""
|
||
|
|
||
|
def transform_documents(
|
||
|
self, documents: Sequence[Document], **kwargs: Any
|
||
|
) -> Sequence[Document]:
|
||
|
"""Automatically extract and populate metadata
|
||
|
for each document according to the provided schema."""
|
||
|
|
||
|
new_documents = []
|
||
|
|
||
|
for document in documents:
|
||
|
extracted_metadata: Dict = self.tagging_chain.run(document.page_content) # type: ignore[assignment] # noqa: E501
|
||
|
new_document = Document(
|
||
|
page_content=document.page_content,
|
||
|
metadata={**extracted_metadata, **document.metadata},
|
||
|
)
|
||
|
new_documents.append(new_document)
|
||
|
return new_documents
|
||
|
|
||
|
async def atransform_documents(
|
||
|
self, documents: Sequence[Document], **kwargs: Any
|
||
|
) -> Sequence[Document]:
|
||
|
raise NotImplementedError
|
||
|
|
||
|
|
||
|
def create_metadata_tagger(
|
||
|
metadata_schema: Union[Dict[str, Any], Type[BaseModel]],
|
||
|
llm: BaseLanguageModel,
|
||
|
prompt: Optional[ChatPromptTemplate] = None,
|
||
|
*,
|
||
|
tagging_chain_kwargs: Optional[Dict] = None,
|
||
|
) -> OpenAIMetadataTagger:
|
||
|
"""Create a DocumentTransformer that uses an OpenAI function chain to automatically
|
||
|
tag documents with metadata based on their content and an input schema.
|
||
|
|
||
|
Args:
|
||
|
metadata_schema: Either a dictionary or pydantic.BaseModel class. If a dictionary
|
||
|
is passed in, it's assumed to already be a valid JsonSchema.
|
||
|
For best results, pydantic.BaseModels should have docstrings describing what
|
||
|
the schema represents and descriptions for the parameters.
|
||
|
llm: Language model to use, assumed to support the OpenAI function-calling API.
|
||
|
Defaults to use "gpt-3.5-turbo-0613"
|
||
|
prompt: BasePromptTemplate to pass to the model.
|
||
|
|
||
|
Returns:
|
||
|
An LLMChain that will pass the given function to the model.
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
from langchain_community.chat_models import ChatOpenAI
|
||
|
from langchain_community.document_transformers import create_metadata_tagger
|
||
|
from langchain_core.documents import Document
|
||
|
|
||
|
schema = {
|
||
|
"properties": {
|
||
|
"movie_title": { "type": "string" },
|
||
|
"critic": { "type": "string" },
|
||
|
"tone": {
|
||
|
"type": "string",
|
||
|
"enum": ["positive", "negative"]
|
||
|
},
|
||
|
"rating": {
|
||
|
"type": "integer",
|
||
|
"description": "The number of stars the critic rated the movie"
|
||
|
}
|
||
|
},
|
||
|
"required": ["movie_title", "critic", "tone"]
|
||
|
}
|
||
|
|
||
|
# Must be an OpenAI model that supports functions
|
||
|
llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613")
|
||
|
|
||
|
document_transformer = create_metadata_tagger(schema, llm)
|
||
|
original_documents = [
|
||
|
Document(page_content="Review of The Bee Movie\nBy Roger Ebert\n\nThis is the greatest movie ever made. 4 out of 5 stars."),
|
||
|
Document(page_content="Review of The Godfather\nBy Anonymous\n\nThis movie was super boring. 1 out of 5 stars.", metadata={"reliable": False}),
|
||
|
]
|
||
|
|
||
|
enhanced_documents = document_transformer.transform_documents(original_documents)
|
||
|
""" # noqa: E501
|
||
|
from langchain.chains.openai_functions import create_tagging_chain
|
||
|
|
||
|
metadata_schema = (
|
||
|
metadata_schema
|
||
|
if isinstance(metadata_schema, dict)
|
||
|
else metadata_schema.schema()
|
||
|
)
|
||
|
_tagging_chain_kwargs = tagging_chain_kwargs or {}
|
||
|
tagging_chain = create_tagging_chain(
|
||
|
metadata_schema, llm, prompt=prompt, **_tagging_chain_kwargs
|
||
|
)
|
||
|
return OpenAIMetadataTagger(tagging_chain=tagging_chain)
|