mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
141 lines
5.1 KiB
Python
141 lines
5.1 KiB
Python
|
"""PromptLayer wrapper."""
|
||
|
import datetime
|
||
|
from typing import Any, Dict, List, Optional
|
||
|
|
||
|
from langchain_core.callbacks import (
|
||
|
AsyncCallbackManagerForLLMRun,
|
||
|
CallbackManagerForLLMRun,
|
||
|
)
|
||
|
from langchain_core.messages import BaseMessage
|
||
|
from langchain_core.outputs import ChatResult
|
||
|
|
||
|
from langchain_community.chat_models import ChatOpenAI
|
||
|
|
||
|
|
||
|
class PromptLayerChatOpenAI(ChatOpenAI):
|
||
|
"""`PromptLayer` and `OpenAI` Chat large language models API.
|
||
|
|
||
|
To use, you should have the ``openai`` and ``promptlayer`` python
|
||
|
package installed, and the environment variable ``OPENAI_API_KEY``
|
||
|
and ``PROMPTLAYER_API_KEY`` set with your openAI API key and
|
||
|
promptlayer key respectively.
|
||
|
|
||
|
All parameters that can be passed to the OpenAI LLM can also
|
||
|
be passed here. The PromptLayerChatOpenAI adds to optional
|
||
|
|
||
|
parameters:
|
||
|
``pl_tags``: List of strings to tag the request with.
|
||
|
``return_pl_id``: If True, the PromptLayer request ID will be
|
||
|
returned in the ``generation_info`` field of the
|
||
|
``Generation`` object.
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
from langchain_community.chat_models import PromptLayerChatOpenAI
|
||
|
openai = PromptLayerChatOpenAI(model_name="gpt-3.5-turbo")
|
||
|
"""
|
||
|
|
||
|
pl_tags: Optional[List[str]]
|
||
|
return_pl_id: Optional[bool] = False
|
||
|
|
||
|
@classmethod
|
||
|
def is_lc_serializable(cls) -> bool:
|
||
|
return False
|
||
|
|
||
|
def _generate(
|
||
|
self,
|
||
|
messages: List[BaseMessage],
|
||
|
stop: Optional[List[str]] = None,
|
||
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||
|
stream: Optional[bool] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> ChatResult:
|
||
|
"""Call ChatOpenAI generate and then call PromptLayer API to log the request."""
|
||
|
from promptlayer.utils import get_api_key, promptlayer_api_request
|
||
|
|
||
|
request_start_time = datetime.datetime.now().timestamp()
|
||
|
generated_responses = super()._generate(
|
||
|
messages, stop, run_manager, stream=stream, **kwargs
|
||
|
)
|
||
|
request_end_time = datetime.datetime.now().timestamp()
|
||
|
message_dicts, params = super()._create_message_dicts(messages, stop)
|
||
|
for i, generation in enumerate(generated_responses.generations):
|
||
|
response_dict, params = super()._create_message_dicts(
|
||
|
[generation.message], stop
|
||
|
)
|
||
|
params = {**params, **kwargs}
|
||
|
pl_request_id = promptlayer_api_request(
|
||
|
"langchain.PromptLayerChatOpenAI",
|
||
|
"langchain",
|
||
|
message_dicts,
|
||
|
params,
|
||
|
self.pl_tags,
|
||
|
response_dict,
|
||
|
request_start_time,
|
||
|
request_end_time,
|
||
|
get_api_key(),
|
||
|
return_pl_id=self.return_pl_id,
|
||
|
)
|
||
|
if self.return_pl_id:
|
||
|
if generation.generation_info is None or not isinstance(
|
||
|
generation.generation_info, dict
|
||
|
):
|
||
|
generation.generation_info = {}
|
||
|
generation.generation_info["pl_request_id"] = pl_request_id
|
||
|
return generated_responses
|
||
|
|
||
|
async def _agenerate(
|
||
|
self,
|
||
|
messages: List[BaseMessage],
|
||
|
stop: Optional[List[str]] = None,
|
||
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||
|
stream: Optional[bool] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> ChatResult:
|
||
|
"""Call ChatOpenAI agenerate and then call PromptLayer to log."""
|
||
|
from promptlayer.utils import get_api_key, promptlayer_api_request_async
|
||
|
|
||
|
request_start_time = datetime.datetime.now().timestamp()
|
||
|
generated_responses = await super()._agenerate(
|
||
|
messages, stop, run_manager, stream=stream, **kwargs
|
||
|
)
|
||
|
request_end_time = datetime.datetime.now().timestamp()
|
||
|
message_dicts, params = super()._create_message_dicts(messages, stop)
|
||
|
for i, generation in enumerate(generated_responses.generations):
|
||
|
response_dict, params = super()._create_message_dicts(
|
||
|
[generation.message], stop
|
||
|
)
|
||
|
params = {**params, **kwargs}
|
||
|
pl_request_id = await promptlayer_api_request_async(
|
||
|
"langchain.PromptLayerChatOpenAI.async",
|
||
|
"langchain",
|
||
|
message_dicts,
|
||
|
params,
|
||
|
self.pl_tags,
|
||
|
response_dict,
|
||
|
request_start_time,
|
||
|
request_end_time,
|
||
|
get_api_key(),
|
||
|
return_pl_id=self.return_pl_id,
|
||
|
)
|
||
|
if self.return_pl_id:
|
||
|
if generation.generation_info is None or not isinstance(
|
||
|
generation.generation_info, dict
|
||
|
):
|
||
|
generation.generation_info = {}
|
||
|
generation.generation_info["pl_request_id"] = pl_request_id
|
||
|
return generated_responses
|
||
|
|
||
|
@property
|
||
|
def _llm_type(self) -> str:
|
||
|
return "promptlayer-openai-chat"
|
||
|
|
||
|
@property
|
||
|
def _identifying_params(self) -> Dict[str, Any]:
|
||
|
return {
|
||
|
**super()._identifying_params,
|
||
|
"pl_tags": self.pl_tags,
|
||
|
"return_pl_id": self.return_pl_id,
|
||
|
}
|