langchain/templates/elastic-query-generator/elastic_query_generator/chain.py

52 lines
1.4 KiB
Python
Raw Normal View History

2023-10-27 02:44:30 +00:00
from elasticsearch import Elasticsearch
from langchain.output_parsers.json import SimpleJsonOutputParser
from langchain_community.chat_models import ChatOpenAI
docs[patch], templates[patch]: Import from core (#14575) Update imports to use core for the low-hanging fruit changes. Ran following ```bash git grep -l 'langchain.schema.runnable' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.runnable/langchain_core.runnables/g' git grep -l 'langchain.schema.output_parser' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.output_parser/langchain_core.output_parsers/g' git grep -l 'langchain.schema.messages' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.messages/langchain_core.messages/g' git grep -l 'langchain.schema.chat_histry' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.chat_history/langchain_core.chat_history/g' git grep -l 'langchain.schema.prompt_template' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.prompt_template/langchain_core.prompts/g' git grep -l 'from langchain.pydantic_v1' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.pydantic_v1/from langchain_core.pydantic_v1/g' git grep -l 'from langchain.tools.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.tools\.base/from langchain_core.tools/g' git grep -l 'from langchain.chat_models.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.chat_models.base/from langchain_core.language_models.chat_models/g' git grep -l 'from langchain.llms.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.llms\.base\ /from langchain_core.language_models.llms\ /g' git grep -l 'from langchain.embeddings.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.embeddings\.base/from langchain_core.embeddings/g' git grep -l 'from langchain.vectorstores.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.vectorstores\.base/from langchain_core.vectorstores/g' git grep -l 'from langchain.agents.tools' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.agents\.tools/from langchain_core.tools/g' git grep -l 'from langchain.schema.output' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.output\ /from langchain_core.outputs\ /g' git grep -l 'from langchain.schema.embeddings' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.embeddings/from langchain_core.embeddings/g' git grep -l 'from langchain.schema.document' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.document/from langchain_core.documents/g' git grep -l 'from langchain.schema.agent' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.agent/from langchain_core.agents/g' git grep -l 'from langchain.schema.prompt ' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.prompt\ /from langchain_core.prompt_values /g' git grep -l 'from langchain.schema.language_model' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.language_model/from langchain_core.language_models/g' ```
2023-12-12 00:49:10 +00:00
from langchain_core.pydantic_v1 import BaseModel
from .elastic_index_info import get_indices_infos
2023-10-27 02:44:30 +00:00
from .prompts import DSL_PROMPT
# Setup Elasticsearch
# This shows how to set it up for a cloud hosted version
# Password for the 'elastic' user generated by Elasticsearch
ELASTIC_PASSWORD = "..."
# Found in the 'Manage Deployment' page
CLOUD_ID = "..."
# Create the client instance
2023-10-29 22:50:09 +00:00
db = Elasticsearch(cloud_id=CLOUD_ID, basic_auth=("elastic", ELASTIC_PASSWORD))
# Specify indices to include
# If you want to use on your own indices, you will need to change this.
INCLUDE_INDICES = ["customers"]
# With the Elasticsearch connection created, we can now move on to the chain
_model = ChatOpenAI(temperature=0, model="gpt-4")
2023-10-29 22:50:09 +00:00
chain = (
{
"input": lambda x: x["input"],
# This line only get index info for "customers" index.
# If you are running this on your own data, you will want to change.
"indices_info": lambda _: get_indices_infos(
db, include_indices=INCLUDE_INDICES
),
"top_k": lambda x: x.get("top_k", 5),
}
| DSL_PROMPT
| _model
| SimpleJsonOutputParser()
)
# Nicely typed inputs for playground
class ChainInputs(BaseModel):
input: str
top_k: int = 5
chain = chain.with_types(input_type=ChainInputs)