mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
114 lines
3.9 KiB
Python
114 lines
3.9 KiB
Python
|
import logging
|
||
|
from typing import Any, Dict, List, Mapping, Optional, cast
|
||
|
|
||
|
import requests
|
||
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
||
|
from langchain_core.language_models.llms import LLM
|
||
|
from langchain_core.pydantic_v1 import Extra, Field, SecretStr, root_validator
|
||
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
||
|
|
||
|
from langchain_community.llms.utils import enforce_stop_tokens
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
class CerebriumAI(LLM):
|
||
|
"""CerebriumAI large language models.
|
||
|
|
||
|
To use, you should have the ``cerebrium`` python package installed.
|
||
|
You should also have the environment variable ``CEREBRIUMAI_API_KEY``
|
||
|
set with your API key or pass it as a named argument in the constructor.
|
||
|
|
||
|
Any parameters that are valid to be passed to the call can be passed
|
||
|
in, even if not explicitly saved on this class.
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
from langchain_community.llms import CerebriumAI
|
||
|
cerebrium = CerebriumAI(endpoint_url="", cerebriumai_api_key="my-api-key")
|
||
|
|
||
|
"""
|
||
|
|
||
|
endpoint_url: str = ""
|
||
|
"""model endpoint to use"""
|
||
|
|
||
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||
|
"""Holds any model parameters valid for `create` call not
|
||
|
explicitly specified."""
|
||
|
|
||
|
cerebriumai_api_key: Optional[SecretStr] = None
|
||
|
|
||
|
class Config:
|
||
|
"""Configuration for this pydantic config."""
|
||
|
|
||
|
extra = Extra.forbid
|
||
|
|
||
|
@root_validator(pre=True)
|
||
|
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
||
|
"""Build extra kwargs from additional params that were passed in."""
|
||
|
all_required_field_names = {field.alias for field in cls.__fields__.values()}
|
||
|
|
||
|
extra = values.get("model_kwargs", {})
|
||
|
for field_name in list(values):
|
||
|
if field_name not in all_required_field_names:
|
||
|
if field_name in extra:
|
||
|
raise ValueError(f"Found {field_name} supplied twice.")
|
||
|
logger.warning(
|
||
|
f"""{field_name} was transferred to model_kwargs.
|
||
|
Please confirm that {field_name} is what you intended."""
|
||
|
)
|
||
|
extra[field_name] = values.pop(field_name)
|
||
|
values["model_kwargs"] = extra
|
||
|
return values
|
||
|
|
||
|
@root_validator()
|
||
|
def validate_environment(cls, values: Dict) -> Dict:
|
||
|
"""Validate that api key and python package exists in environment."""
|
||
|
cerebriumai_api_key = convert_to_secret_str(
|
||
|
get_from_dict_or_env(values, "cerebriumai_api_key", "CEREBRIUMAI_API_KEY")
|
||
|
)
|
||
|
values["cerebriumai_api_key"] = cerebriumai_api_key
|
||
|
return values
|
||
|
|
||
|
@property
|
||
|
def _identifying_params(self) -> Mapping[str, Any]:
|
||
|
"""Get the identifying parameters."""
|
||
|
return {
|
||
|
**{"endpoint_url": self.endpoint_url},
|
||
|
**{"model_kwargs": self.model_kwargs},
|
||
|
}
|
||
|
|
||
|
@property
|
||
|
def _llm_type(self) -> str:
|
||
|
"""Return type of llm."""
|
||
|
return "cerebriumai"
|
||
|
|
||
|
def _call(
|
||
|
self,
|
||
|
prompt: str,
|
||
|
stop: Optional[List[str]] = None,
|
||
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> str:
|
||
|
headers: Dict = {
|
||
|
"Authorization": cast(
|
||
|
SecretStr, self.cerebriumai_api_key
|
||
|
).get_secret_value(),
|
||
|
"Content-Type": "application/json",
|
||
|
}
|
||
|
params = self.model_kwargs or {}
|
||
|
payload = {"prompt": prompt, **params, **kwargs}
|
||
|
response = requests.post(self.endpoint_url, json=payload, headers=headers)
|
||
|
if response.status_code == 200:
|
||
|
data = response.json()
|
||
|
text = data["result"]
|
||
|
if stop is not None:
|
||
|
# I believe this is required since the stop tokens
|
||
|
# are not enforced by the model parameters
|
||
|
text = enforce_stop_tokens(text, stop)
|
||
|
return text
|
||
|
else:
|
||
|
response.raise_for_status()
|
||
|
return ""
|