2023-12-20 02:55:19 +00:00
import os
2024-03-05 01:50:13 +00:00
import re
2024-04-04 20:22:48 +00:00
import warnings
from operator import itemgetter
from typing import (
Any ,
AsyncIterator ,
Callable ,
Dict ,
Iterator ,
List ,
2024-04-16 22:27:29 +00:00
Literal ,
2024-04-04 20:22:48 +00:00
Mapping ,
Optional ,
Sequence ,
Tuple ,
Type ,
TypedDict ,
Union ,
cast ,
)
2023-12-20 02:55:19 +00:00
import anthropic
2024-05-31 19:10:22 +00:00
from langchain_core . _api import deprecated
2023-12-20 02:55:19 +00:00
from langchain_core . callbacks import (
AsyncCallbackManagerForLLMRun ,
CallbackManagerForLLMRun ,
)
2024-04-04 20:22:48 +00:00
from langchain_core . language_models import LanguageModelInput
2024-03-08 21:32:57 +00:00
from langchain_core . language_models . chat_models import (
BaseChatModel ,
2024-05-17 17:51:26 +00:00
LangSmithParams ,
2024-03-08 21:32:57 +00:00
agenerate_from_stream ,
generate_from_stream ,
)
2023-12-20 02:55:19 +00:00
from langchain_core . messages import (
AIMessage ,
AIMessageChunk ,
BaseMessage ,
2024-04-04 20:22:48 +00:00
HumanMessage ,
SystemMessage ,
2024-04-16 22:27:29 +00:00
ToolCall ,
2024-04-04 20:22:48 +00:00
ToolMessage ,
2023-12-20 02:55:19 +00:00
)
anthropic: refactor streaming to use events api; add streaming usage metadata (#22628)
- Refactor streaming to use raw events;
- Add `stream_usage` class attribute and kwarg to stream methods that,
if True, will include separate chunks in the stream containing usage
metadata.
There are two ways to implement streaming with anthropic's python sdk.
They have slight differences in how they surface usage metadata.
1. [Use helper
functions](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-helpers).
This is what we are doing now.
```python
count = 1
with client.messages.stream(**params) as stream:
for text in stream.text_stream:
snapshot = stream.current_message_snapshot
print(f"{count}: {snapshot.usage} -- {text}")
count = count + 1
final_snapshot = stream.get_final_message()
print(f"{count}: {final_snapshot.usage}")
```
```
1: Usage(input_tokens=8, output_tokens=1) -- Hello
2: Usage(input_tokens=8, output_tokens=1) -- !
3: Usage(input_tokens=8, output_tokens=1) -- How
4: Usage(input_tokens=8, output_tokens=1) -- can
5: Usage(input_tokens=8, output_tokens=1) -- I
6: Usage(input_tokens=8, output_tokens=1) -- assist
7: Usage(input_tokens=8, output_tokens=1) -- you
8: Usage(input_tokens=8, output_tokens=1) -- today
9: Usage(input_tokens=8, output_tokens=1) -- ?
10: Usage(input_tokens=8, output_tokens=12)
```
To do this correctly, we need to emit a new chunk at the end of the
stream containing the usage metadata.
2. [Handle raw
events](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-responses)
```python
stream = client.messages.create(**params, stream=True)
count = 1
for event in stream:
print(f"{count}: {event}")
count = count + 1
```
```
1: RawMessageStartEvent(message=Message(id='msg_01Vdyov2kADZTXqSKkfNJXcS', content=[], model='claude-3-haiku-20240307', role='assistant', stop_reason=None, stop_sequence=None, type='message', usage=Usage(input_tokens=8, output_tokens=1)), type='message_start')
2: RawContentBlockStartEvent(content_block=TextBlock(text='', type='text'), index=0, type='content_block_start')
3: RawContentBlockDeltaEvent(delta=TextDelta(text='Hello', type='text_delta'), index=0, type='content_block_delta')
4: RawContentBlockDeltaEvent(delta=TextDelta(text='!', type='text_delta'), index=0, type='content_block_delta')
5: RawContentBlockDeltaEvent(delta=TextDelta(text=' How', type='text_delta'), index=0, type='content_block_delta')
6: RawContentBlockDeltaEvent(delta=TextDelta(text=' can', type='text_delta'), index=0, type='content_block_delta')
7: RawContentBlockDeltaEvent(delta=TextDelta(text=' I', type='text_delta'), index=0, type='content_block_delta')
8: RawContentBlockDeltaEvent(delta=TextDelta(text=' assist', type='text_delta'), index=0, type='content_block_delta')
9: RawContentBlockDeltaEvent(delta=TextDelta(text=' you', type='text_delta'), index=0, type='content_block_delta')
10: RawContentBlockDeltaEvent(delta=TextDelta(text=' today', type='text_delta'), index=0, type='content_block_delta')
11: RawContentBlockDeltaEvent(delta=TextDelta(text='?', type='text_delta'), index=0, type='content_block_delta')
12: RawContentBlockStopEvent(index=0, type='content_block_stop')
13: RawMessageDeltaEvent(delta=Delta(stop_reason='end_turn', stop_sequence=None), type='message_delta', usage=MessageDeltaUsage(output_tokens=12))
14: RawMessageStopEvent(type='message_stop')
```
Here we implement the second option, in part because it should make
things easier when implementing streaming tool calls in the near future.
This would add two new chunks to the stream-- one at the beginning and
one at the end-- with blank content and containing usage metadata. We
add kwargs to the stream methods and a class attribute allowing for this
behavior to be toggled. I enabled it by default. If we merge this we can
add the same kwargs / attribute to OpenAI.
Usage:
```python
from langchain_anthropic import ChatAnthropic
model = ChatAnthropic(
model="claude-3-haiku-20240307",
temperature=0
)
full = None
for chunk in model.stream("hi"):
full = chunk if full is None else full + chunk
print(chunk)
print(f"\nFull: {full}")
```
```
content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 0, 'total_tokens': 8}
content='Hello' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='!' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' How' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' can' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' I' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' assist' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' you' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' today' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='?' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 0, 'output_tokens': 12, 'total_tokens': 12}
Full: content='Hello! How can I assist you today?' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 12, 'total_tokens': 20}
```
2024-06-07 13:21:46 +00:00
from langchain_core . messages . ai import UsageMetadata
core[minor], integrations...[patch]: Support ToolCall as Tool input and ToolMessage as Tool output (#24038)
Changes:
- ToolCall, InvalidToolCall and ToolCallChunk can all accept a "type"
parameter now
- LLM integration packages add "type" to all the above
- Tool supports ToolCall inputs that have "type" specified
- Tool outputs ToolMessage when a ToolCall is passed as input
- Tools can separately specify ToolMessage.content and
ToolMessage.raw_output
- Tools emit events for validation errors (using on_tool_error and
on_tool_end)
Example:
```python
@tool("structured_api", response_format="content_and_raw_output")
def _mock_structured_tool_with_raw_output(
arg1: int, arg2: bool, arg3: Optional[dict] = None
) -> Tuple[str, dict]:
"""A Structured Tool"""
return f"{arg1} {arg2}", {"arg1": arg1, "arg2": arg2, "arg3": arg3}
def test_tool_call_input_tool_message_with_raw_output() -> None:
tool_call: Dict = {
"name": "structured_api",
"args": {"arg1": 1, "arg2": True, "arg3": {"img": "base64string..."}},
"id": "123",
"type": "tool_call",
}
expected = ToolMessage("1 True", raw_output=tool_call["args"], tool_call_id="123")
tool = _mock_structured_tool_with_raw_output
actual = tool.invoke(tool_call)
assert actual == expected
tool_call.pop("type")
with pytest.raises(ValidationError):
tool.invoke(tool_call)
actual_content = tool.invoke(tool_call["args"])
assert actual_content == expected.content
```
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-11 21:54:02 +00:00
from langchain_core . messages . tool import tool_call_chunk as create_tool_call_chunk
2024-07-02 20:15:26 +00:00
from langchain_core . output_parsers import (
JsonOutputKeyToolsParser ,
PydanticToolsParser ,
)
from langchain_core . output_parsers . base import OutputParserLike
2023-12-20 02:55:19 +00:00
from langchain_core . outputs import ChatGeneration , ChatGenerationChunk , ChatResult
core,groq,openai,mistralai,robocorp,fireworks,anthropic[patch]: Update BaseModel subclass and instance checks to handle both v1 and proper namespaces (#24417)
After this PR chat models will correctly handle pydantic 2 with
bind_tools and with_structured_output.
```python
import pydantic
print(pydantic.__version__)
```
2.8.2
```python
from langchain_openai import ChatOpenAI
from pydantic import BaseModel, Field
class Add(BaseModel):
x: int
y: int
model = ChatOpenAI().bind_tools([Add])
print(model.invoke('2 + 5').tool_calls)
model = ChatOpenAI().with_structured_output(Add)
print(type(model.invoke('2 + 5')))
```
```
[{'name': 'Add', 'args': {'x': 2, 'y': 5}, 'id': 'call_PNUFa4pdfNOYXxIMHc6ps2Do', 'type': 'tool_call'}]
<class '__main__.Add'>
```
```python
from langchain_openai import ChatOpenAI
from pydantic.v1 import BaseModel, Field
class Add(BaseModel):
x: int
y: int
model = ChatOpenAI().bind_tools([Add])
print(model.invoke('2 + 5').tool_calls)
model = ChatOpenAI().with_structured_output(Add)
print(type(model.invoke('2 + 5')))
```
```python
[{'name': 'Add', 'args': {'x': 2, 'y': 5}, 'id': 'call_hhiHYP441cp14TtrHKx3Upg0', 'type': 'tool_call'}]
<class '__main__.Add'>
```
Addresses issues: https://github.com/langchain-ai/langchain/issues/22782
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-22 20:07:39 +00:00
from langchain_core . pydantic_v1 import (
BaseModel ,
Field ,
SecretStr ,
root_validator ,
)
2024-04-04 20:22:48 +00:00
from langchain_core . runnables import (
Runnable ,
RunnableMap ,
RunnablePassthrough ,
)
from langchain_core . tools import BaseTool
2024-02-26 05:57:26 +00:00
from langchain_core . utils import (
build_extra_kwargs ,
convert_to_secret_str ,
get_pydantic_field_names ,
)
2024-04-04 20:22:48 +00:00
from langchain_core . utils . function_calling import convert_to_openai_tool
core,groq,openai,mistralai,robocorp,fireworks,anthropic[patch]: Update BaseModel subclass and instance checks to handle both v1 and proper namespaces (#24417)
After this PR chat models will correctly handle pydantic 2 with
bind_tools and with_structured_output.
```python
import pydantic
print(pydantic.__version__)
```
2.8.2
```python
from langchain_openai import ChatOpenAI
from pydantic import BaseModel, Field
class Add(BaseModel):
x: int
y: int
model = ChatOpenAI().bind_tools([Add])
print(model.invoke('2 + 5').tool_calls)
model = ChatOpenAI().with_structured_output(Add)
print(type(model.invoke('2 + 5')))
```
```
[{'name': 'Add', 'args': {'x': 2, 'y': 5}, 'id': 'call_PNUFa4pdfNOYXxIMHc6ps2Do', 'type': 'tool_call'}]
<class '__main__.Add'>
```
```python
from langchain_openai import ChatOpenAI
from pydantic.v1 import BaseModel, Field
class Add(BaseModel):
x: int
y: int
model = ChatOpenAI().bind_tools([Add])
print(model.invoke('2 + 5').tool_calls)
model = ChatOpenAI().with_structured_output(Add)
print(type(model.invoke('2 + 5')))
```
```python
[{'name': 'Add', 'args': {'x': 2, 'y': 5}, 'id': 'call_hhiHYP441cp14TtrHKx3Upg0', 'type': 'tool_call'}]
<class '__main__.Add'>
```
Addresses issues: https://github.com/langchain-ai/langchain/issues/22782
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-22 20:07:39 +00:00
from langchain_core . utils . pydantic import is_basemodel_subclass
2024-04-04 20:22:48 +00:00
2024-07-02 20:15:26 +00:00
from langchain_anthropic . output_parsers import extract_tool_calls
2023-12-20 02:55:19 +00:00
2024-04-06 00:22:14 +00:00
_message_type_lookups = {
" human " : " user " ,
" ai " : " assistant " ,
" AIMessageChunk " : " assistant " ,
" HumanMessageChunk " : " user " ,
}
2023-12-20 02:55:19 +00:00
2024-03-05 01:50:13 +00:00
def _format_image ( image_url : str ) - > Dict :
"""
Formats an image of format data : image / jpeg ; base64 , { b64_string }
to a dict for anthropic api
{
" type " : " base64 " ,
" media_type " : " image/jpeg " ,
" data " : " /9j/4AAQSkZJRg... " ,
}
And throws an error if it ' s not a b64 image
"""
regex = r " ^data:(?P<media_type>image/.+);base64,(?P<data>.+)$ "
match = re . match ( regex , image_url )
if match is None :
raise ValueError (
" Anthropic only supports base64-encoded images currently. "
" Example: data:image/png;base64, ' /9j/4AAQSk ' ... "
)
return {
" type " : " base64 " ,
" media_type " : match . group ( " media_type " ) ,
" data " : match . group ( " data " ) ,
}
2024-04-04 20:22:48 +00:00
def _merge_messages (
2024-04-17 22:47:19 +00:00
messages : Sequence [ BaseMessage ] ,
2024-04-04 20:22:48 +00:00
) - > List [ Union [ SystemMessage , AIMessage , HumanMessage ] ] :
""" Merge runs of human/tool messages into single human messages with content blocks. """ # noqa: E501
merged : list = [ ]
for curr in messages :
2024-04-17 22:47:19 +00:00
curr = curr . copy ( deep = True )
2024-04-04 20:22:48 +00:00
if isinstance ( curr , ToolMessage ) :
anthropic[patch]: always add tool_result type to ToolMessage content (#22721)
Anthropic tool results can contain image data, which are typically
represented with content blocks having `"type": "image"`. Currently,
these content blocks are passed as-is as human/user messages to
Anthropic, which raises BadRequestError as it expects a tool_result
block to follow a tool_use.
Here we update ChatAnthropic to nest the content blocks inside a
tool_result content block.
Example:
```python
import base64
import httpx
from langchain_anthropic import ChatAnthropic
from langchain_core.messages import AIMessage, HumanMessage, ToolMessage
from langchain_core.pydantic_v1 import BaseModel, Field
# Fetch image
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8")
class FetchImage(BaseModel):
should_fetch: bool = Field(..., description="Whether an image is requested.")
llm = ChatAnthropic(model="claude-3-sonnet-20240229").bind_tools([FetchImage])
messages = [
HumanMessage(content="Could you summon a beautiful image please?"),
AIMessage(
content=[
{
"type": "tool_use",
"id": "toolu_01Rn6Qvj5m7955x9m9Pfxbcx",
"name": "FetchImage",
"input": {"should_fetch": True},
},
],
tool_calls=[
{
"name": "FetchImage",
"args": {"should_fetch": True},
"id": "toolu_01Rn6Qvj5m7955x9m9Pfxbcx",
},
],
),
ToolMessage(
name="FetchImage",
content=[
{
"type": "image",
"source": {
"type": "base64",
"media_type": "image/jpeg",
"data": image_data,
},
},
],
tool_call_id="toolu_01Rn6Qvj5m7955x9m9Pfxbcx",
),
]
llm.invoke(messages)
```
Trace:
https://smith.langchain.com/public/d27e4fc1-a96d-41e1-9f52-54f5004122db/r
2024-06-14 03:14:23 +00:00
if isinstance ( curr . content , list ) and all (
isinstance ( block , dict ) and block . get ( " type " ) == " tool_result "
for block in curr . content
) :
curr = HumanMessage ( curr . content ) # type: ignore[misc]
else :
2024-06-03 15:21:55 +00:00
curr = HumanMessage ( # type: ignore[misc]
2024-04-04 20:22:48 +00:00
[
{
" type " : " tool_result " ,
" content " : curr . content ,
" tool_use_id " : curr . tool_call_id ,
2024-07-29 21:01:53 +00:00
" is_error " : curr . status == " error " ,
2024-04-04 20:22:48 +00:00
}
]
)
last = merged [ - 1 ] if merged else None
if isinstance ( last , HumanMessage ) and isinstance ( curr , HumanMessage ) :
if isinstance ( last . content , str ) :
new_content : List = [ { " type " : " text " , " text " : last . content } ]
else :
new_content = last . content
if isinstance ( curr . content , str ) :
new_content . append ( { " type " : " text " , " text " : curr . content } )
else :
new_content . extend ( curr . content )
last . content = new_content
else :
merged . append ( curr )
return merged
2023-12-20 02:55:19 +00:00
def _format_messages ( messages : List [ BaseMessage ] ) - > Tuple [ Optional [ str ] , List [ Dict ] ] :
""" Format messages for anthropic. """
"""
[
{
" role " : _message_type_lookups [ m . type ] ,
anthropic[minor]: Adds streaming tool call support for Anthropic (#22687)
Preserves string content chunks for non tool call requests for
convenience.
One thing - Anthropic events look like this:
```
RawContentBlockStartEvent(content_block=TextBlock(text='', type='text'), index=0, type='content_block_start')
RawContentBlockDeltaEvent(delta=TextDelta(text='<thinking>\nThe', type='text_delta'), index=0, type='content_block_delta')
RawContentBlockDeltaEvent(delta=TextDelta(text=' provide', type='text_delta'), index=0, type='content_block_delta')
...
RawContentBlockStartEvent(content_block=ToolUseBlock(id='toolu_01GJ6x2ddcMG3psDNNe4eDqb', input={}, name='get_weather', type='tool_use'), index=1, type='content_block_start')
RawContentBlockDeltaEvent(delta=InputJsonDelta(partial_json='', type='input_json_delta'), index=1, type='content_block_delta')
```
Note that `delta` has a `type` field. With this implementation, I'm
dropping it because `merge_list` behavior will concatenate strings.
We currently have `index` as a special field when merging lists, would
it be worth adding `type` too?
If so, what do we set as a context block chunk? `text` vs.
`text_delta`/`tool_use` vs `input_json_delta`?
CC @ccurme @efriis @baskaryan
2024-06-14 16:14:43 +00:00
" content " : [ _AnthropicMessageContent ( text = m . content ) . model_dump ( ) ] ,
2023-12-20 02:55:19 +00:00
}
for m in messages
]
"""
2024-03-05 01:50:13 +00:00
system : Optional [ str ] = None
formatted_messages : List [ Dict ] = [ ]
2024-04-04 20:22:48 +00:00
merged_messages = _merge_messages ( messages )
for i , message in enumerate ( merged_messages ) :
2023-12-20 02:55:19 +00:00
if message . type == " system " :
if i != 0 :
raise ValueError ( " System message must be at beginning of message list. " )
2024-03-05 01:50:13 +00:00
if not isinstance ( message . content , str ) :
raise ValueError (
" System message must be a string, "
f " instead was: { type ( message . content ) } "
)
2023-12-20 02:55:19 +00:00
system = message . content
2024-03-05 01:50:13 +00:00
continue
role = _message_type_lookups [ message . type ]
2024-04-16 22:27:29 +00:00
content : Union [ str , List ]
2024-03-05 01:50:13 +00:00
if not isinstance ( message . content , str ) :
# parse as dict
assert isinstance (
message . content , list
) , " Anthropic message content must be str or list of dicts "
# populate content
content = [ ]
for item in message . content :
if isinstance ( item , str ) :
2024-05-24 15:18:14 +00:00
content . append ( { " type " : " text " , " text " : item } )
2024-03-05 01:50:13 +00:00
elif isinstance ( item , dict ) :
if " type " not in item :
raise ValueError ( " Dict content item must have a type key " )
2024-04-04 20:22:48 +00:00
elif item [ " type " ] == " image_url " :
2024-03-05 01:50:13 +00:00
# convert format
source = _format_image ( item [ " image_url " ] [ " url " ] )
2024-05-24 15:18:14 +00:00
content . append ( { " type " : " image " , " source " : source } )
2024-04-04 20:22:48 +00:00
elif item [ " type " ] == " tool_use " :
2024-05-24 15:18:14 +00:00
# If a tool_call with the same id as a tool_use content block
# exists, the tool_call is preferred.
if isinstance ( message , AIMessage ) and item [ " id " ] in [
tc [ " id " ] for tc in message . tool_calls
] :
overlapping = [
tc
for tc in message . tool_calls
if tc [ " id " ] == item [ " id " ]
]
content . extend (
_lc_tool_calls_to_anthropic_tool_use_blocks ( overlapping )
)
else :
item . pop ( " text " , None )
content . append ( item )
2024-04-17 19:37:04 +00:00
elif item [ " type " ] == " text " :
text = item . get ( " text " , " " )
# Only add non-empty strings for now as empty ones are not
# accepted.
# https://github.com/anthropics/anthropic-sdk-python/issues/461
if text . strip ( ) :
2024-05-24 15:18:14 +00:00
content . append ( { " type " : " text " , " text " : text } )
2024-03-05 01:50:13 +00:00
else :
content . append ( item )
else :
raise ValueError (
f " Content items must be str or dict, instead was: { type ( item ) } "
)
2024-05-24 15:18:14 +00:00
elif isinstance ( message , AIMessage ) and message . tool_calls :
2024-04-16 22:27:29 +00:00
content = (
[ ]
if not message . content
else [ { " type " : " text " , " text " : message . content } ]
)
# Note: Anthropic can't have invalid tool calls as presently defined,
# since the model already returns dicts args not JSON strings, and invalid
# tool calls are those with invalid JSON for args.
content + = _lc_tool_calls_to_anthropic_tool_use_blocks ( message . tool_calls )
2023-12-20 02:55:19 +00:00
else :
2024-03-05 01:50:13 +00:00
content = message . content
2024-05-24 15:18:14 +00:00
formatted_messages . append ( { " role " : role , " content " : content } )
2023-12-20 02:55:19 +00:00
return system , formatted_messages
2024-02-26 05:57:26 +00:00
class ChatAnthropic ( BaseChatModel ) :
2024-06-19 02:26:45 +00:00
""" Anthropic chat models.
2024-03-04 18:44:54 +00:00
2024-06-04 19:42:06 +00:00
See https : / / docs . anthropic . com / en / docs / models - overview for a list of the latest models .
2023-12-20 02:55:19 +00:00
2024-06-04 19:42:06 +00:00
Setup :
Install ` ` langchain - anthropic ` ` and set environment variable ` ` ANTHROPIC_API_KEY ` ` .
. . code - block : : bash
pip install - U langchain - anthropic
export ANTHROPIC_API_KEY = " your-api-key "
Key init args — completion params :
model : str
Name of Anthropic model to use . E . g . " claude-3-sonnet-20240229 " .
temperature : float
Sampling temperature . Ranges from 0.0 to 1.0 .
max_tokens : Optional [ int ]
Max number of tokens to generate .
Key init args — client params :
timeout : Optional [ float ]
Timeout for requests .
max_retries : int
Max number of retries if a request fails .
api_key : Optional [ str ]
Anthropic API key . If not passed in will be read from env var ANTHROPIC_API_KEY .
base_url : Optional [ str ]
Base URL for API requests . Only specify if using a proxy or service
emulator .
See full list of supported init args and their descriptions in the params section .
Instantiate :
2023-12-20 02:55:19 +00:00
. . code - block : : python
2024-03-04 18:44:54 +00:00
from langchain_anthropic import ChatAnthropic
2023-12-20 02:55:19 +00:00
2024-06-04 19:42:06 +00:00
llm = ChatAnthropic (
model = " claude-3-sonnet-20240229 " ,
temperature = 0 ,
max_tokens = 1024 ,
timeout = None ,
max_retries = 2 ,
# api_key="...",
# base_url="...",
# other params...
)
* * NOTE * * : Any param which is not explicitly supported will be passed directly to the
` ` anthropic . Anthropic . messages . create ( . . . ) ` ` API every time to the model is
invoked . For example :
. . code - block : : python
from langchain_anthropic import ChatAnthropic
import anthropic
ChatAnthropic ( . . . , extra_headers = { } ) . invoke ( . . . )
# results in underlying API call of:
anthropic . Anthropic ( . . ) . messages . create ( . . . , extra_headers = { } )
# which is also equivalent to:
ChatAnthropic ( . . . ) . invoke ( . . . , extra_headers = { } )
Invoke :
. . code - block : : python
messages = [
( " system " , " You are a helpful translator. Translate the user sentence to French. " ) ,
( " human " , " I love programming. " ) ,
]
llm . invoke ( messages )
. . code - block : : python
AIMessage ( content = " J ' aime la programmation. " , response_metadata = { ' id ' : ' msg_01Trik66aiQ9Z1higrD5XFx3 ' , ' model ' : ' claude-3-sonnet-20240229 ' , ' stop_reason ' : ' end_turn ' , ' stop_sequence ' : None , ' usage ' : { ' input_tokens ' : 25 , ' output_tokens ' : 11 } } , id = ' run-5886ac5f-3c2e-49f5-8a44-b1e92808c929-0 ' , usage_metadata = { ' input_tokens ' : 25 , ' output_tokens ' : 11 , ' total_tokens ' : 36 } )
Stream :
. . code - block : : python
for chunk in llm . stream ( messages ) :
print ( chunk )
. . code - block : : python
AIMessageChunk ( content = ' J ' , id = ' run-272ff5f9-8485-402c-b90d-eac8babc5b25 ' )
AIMessageChunk ( content = " ' " , id = ' run-272ff5f9-8485-402c-b90d-eac8babc5b25 ' )
AIMessageChunk ( content = ' a ' , id = ' run-272ff5f9-8485-402c-b90d-eac8babc5b25 ' )
AIMessageChunk ( content = ' ime ' , id = ' run-272ff5f9-8485-402c-b90d-eac8babc5b25 ' )
AIMessageChunk ( content = ' la ' , id = ' run-272ff5f9-8485-402c-b90d-eac8babc5b25 ' )
AIMessageChunk ( content = ' programm ' , id = ' run-272ff5f9-8485-402c-b90d-eac8babc5b25 ' )
AIMessageChunk ( content = ' ation ' , id = ' run-272ff5f9-8485-402c-b90d-eac8babc5b25 ' )
AIMessageChunk ( content = ' . ' , id = ' run-272ff5f9-8485-402c-b90d-eac8babc5b25 ' )
. . code - block : : python
stream = llm . stream ( messages )
full = next ( stream )
for chunk in stream :
full + = chunk
full
. . code - block : : python
AIMessageChunk ( content = " J ' aime la programmation. " , id = ' run-b34faef0-882f-4869-a19c-ed2b856e6361 ' )
Async :
. . code - block : : python
await llm . ainvoke ( messages )
# stream:
# async for chunk in (await llm.astream(messages))
# batch:
# await llm.abatch([messages])
. . code - block : : python
AIMessage ( content = " J ' aime la programmation. " , response_metadata = { ' id ' : ' msg_01Trik66aiQ9Z1higrD5XFx3 ' , ' model ' : ' claude-3-sonnet-20240229 ' , ' stop_reason ' : ' end_turn ' , ' stop_sequence ' : None , ' usage ' : { ' input_tokens ' : 25 , ' output_tokens ' : 11 } } , id = ' run-5886ac5f-3c2e-49f5-8a44-b1e92808c929-0 ' , usage_metadata = { ' input_tokens ' : 25 , ' output_tokens ' : 11 , ' total_tokens ' : 36 } )
Tool calling :
. . code - block : : python
from langchain_core . pydantic_v1 import BaseModel , Field
class GetWeather ( BaseModel ) :
''' Get the current weather in a given location '''
location : str = Field ( . . . , description = " The city and state, e.g. San Francisco, CA " )
class GetPopulation ( BaseModel ) :
''' Get the current population in a given location '''
location : str = Field ( . . . , description = " The city and state, e.g. San Francisco, CA " )
llm_with_tools = llm . bind_tools ( [ GetWeather , GetPopulation ] )
ai_msg = llm_with_tools . invoke ( " Which city is hotter today and which is bigger: LA or NY? " )
ai_msg . tool_calls
. . code - block : : python
[ { ' name ' : ' GetWeather ' ,
' args ' : { ' location ' : ' Los Angeles, CA ' } ,
' id ' : ' toolu_01KzpPEAgzura7hpBqwHbWdo ' } ,
{ ' name ' : ' GetWeather ' ,
' args ' : { ' location ' : ' New York, NY ' } ,
' id ' : ' toolu_01JtgbVGVJbiSwtZk3Uycezx ' } ,
{ ' name ' : ' GetPopulation ' ,
' args ' : { ' location ' : ' Los Angeles, CA ' } ,
' id ' : ' toolu_01429aygngesudV9nTbCKGuw ' } ,
{ ' name ' : ' GetPopulation ' ,
' args ' : { ' location ' : ' New York, NY ' } ,
' id ' : ' toolu_01JPktyd44tVMeBcPPnFSEJG ' } ]
See ` ` ChatAnthropic . bind_tools ( ) ` ` method for more .
Structured output :
. . code - block : : python
from typing import Optional
from langchain_core . pydantic_v1 import BaseModel , Field
class Joke ( BaseModel ) :
''' Joke to tell user. '''
setup : str = Field ( description = " The setup of the joke " )
punchline : str = Field ( description = " The punchline to the joke " )
rating : Optional [ int ] = Field ( description = " How funny the joke is, from 1 to 10 " )
structured_llm = llm . with_structured_output ( Joke )
structured_llm . invoke ( " Tell me a joke about cats " )
. . code - block : : python
Joke ( setup = ' Why was the cat sitting on the computer? ' , punchline = ' To keep an eye on the mouse! ' , rating = None )
See ` ` ChatAnthropic . with_structured_output ( ) ` ` for more .
Image input :
. . code - block : : python
import base64
import httpx
from langchain_core . messages import HumanMessage
image_url = " https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg "
image_data = base64 . b64encode ( httpx . get ( image_url ) . content ) . decode ( " utf-8 " )
message = HumanMessage (
content = [
{ " type " : " text " , " text " : " describe the weather in this image " } ,
{
" type " : " image_url " ,
" image_url " : { " url " : f " data:image/jpeg;base64, { image_data } " } ,
} ,
] ,
)
ai_msg = llm . invoke ( [ message ] )
ai_msg . content
. . code - block : : python
" The image depicts a sunny day with a partly cloudy sky. The sky is a brilliant blue color with scattered white clouds drifting across. The lighting and cloud patterns suggest pleasant, mild weather conditions. The scene shows a grassy field or meadow with a wooden boardwalk trail leading through it, indicating an outdoor setting on a nice day well-suited for enjoying nature. "
Token usage :
. . code - block : : python
ai_msg = llm . invoke ( messages )
ai_msg . usage_metadata
. . code - block : : python
{ ' input_tokens ' : 25 , ' output_tokens ' : 11 , ' total_tokens ' : 36 }
anthropic: refactor streaming to use events api; add streaming usage metadata (#22628)
- Refactor streaming to use raw events;
- Add `stream_usage` class attribute and kwarg to stream methods that,
if True, will include separate chunks in the stream containing usage
metadata.
There are two ways to implement streaming with anthropic's python sdk.
They have slight differences in how they surface usage metadata.
1. [Use helper
functions](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-helpers).
This is what we are doing now.
```python
count = 1
with client.messages.stream(**params) as stream:
for text in stream.text_stream:
snapshot = stream.current_message_snapshot
print(f"{count}: {snapshot.usage} -- {text}")
count = count + 1
final_snapshot = stream.get_final_message()
print(f"{count}: {final_snapshot.usage}")
```
```
1: Usage(input_tokens=8, output_tokens=1) -- Hello
2: Usage(input_tokens=8, output_tokens=1) -- !
3: Usage(input_tokens=8, output_tokens=1) -- How
4: Usage(input_tokens=8, output_tokens=1) -- can
5: Usage(input_tokens=8, output_tokens=1) -- I
6: Usage(input_tokens=8, output_tokens=1) -- assist
7: Usage(input_tokens=8, output_tokens=1) -- you
8: Usage(input_tokens=8, output_tokens=1) -- today
9: Usage(input_tokens=8, output_tokens=1) -- ?
10: Usage(input_tokens=8, output_tokens=12)
```
To do this correctly, we need to emit a new chunk at the end of the
stream containing the usage metadata.
2. [Handle raw
events](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-responses)
```python
stream = client.messages.create(**params, stream=True)
count = 1
for event in stream:
print(f"{count}: {event}")
count = count + 1
```
```
1: RawMessageStartEvent(message=Message(id='msg_01Vdyov2kADZTXqSKkfNJXcS', content=[], model='claude-3-haiku-20240307', role='assistant', stop_reason=None, stop_sequence=None, type='message', usage=Usage(input_tokens=8, output_tokens=1)), type='message_start')
2: RawContentBlockStartEvent(content_block=TextBlock(text='', type='text'), index=0, type='content_block_start')
3: RawContentBlockDeltaEvent(delta=TextDelta(text='Hello', type='text_delta'), index=0, type='content_block_delta')
4: RawContentBlockDeltaEvent(delta=TextDelta(text='!', type='text_delta'), index=0, type='content_block_delta')
5: RawContentBlockDeltaEvent(delta=TextDelta(text=' How', type='text_delta'), index=0, type='content_block_delta')
6: RawContentBlockDeltaEvent(delta=TextDelta(text=' can', type='text_delta'), index=0, type='content_block_delta')
7: RawContentBlockDeltaEvent(delta=TextDelta(text=' I', type='text_delta'), index=0, type='content_block_delta')
8: RawContentBlockDeltaEvent(delta=TextDelta(text=' assist', type='text_delta'), index=0, type='content_block_delta')
9: RawContentBlockDeltaEvent(delta=TextDelta(text=' you', type='text_delta'), index=0, type='content_block_delta')
10: RawContentBlockDeltaEvent(delta=TextDelta(text=' today', type='text_delta'), index=0, type='content_block_delta')
11: RawContentBlockDeltaEvent(delta=TextDelta(text='?', type='text_delta'), index=0, type='content_block_delta')
12: RawContentBlockStopEvent(index=0, type='content_block_stop')
13: RawMessageDeltaEvent(delta=Delta(stop_reason='end_turn', stop_sequence=None), type='message_delta', usage=MessageDeltaUsage(output_tokens=12))
14: RawMessageStopEvent(type='message_stop')
```
Here we implement the second option, in part because it should make
things easier when implementing streaming tool calls in the near future.
This would add two new chunks to the stream-- one at the beginning and
one at the end-- with blank content and containing usage metadata. We
add kwargs to the stream methods and a class attribute allowing for this
behavior to be toggled. I enabled it by default. If we merge this we can
add the same kwargs / attribute to OpenAI.
Usage:
```python
from langchain_anthropic import ChatAnthropic
model = ChatAnthropic(
model="claude-3-haiku-20240307",
temperature=0
)
full = None
for chunk in model.stream("hi"):
full = chunk if full is None else full + chunk
print(chunk)
print(f"\nFull: {full}")
```
```
content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 0, 'total_tokens': 8}
content='Hello' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='!' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' How' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' can' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' I' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' assist' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' you' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' today' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='?' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 0, 'output_tokens': 12, 'total_tokens': 12}
Full: content='Hello! How can I assist you today?' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 12, 'total_tokens': 20}
```
2024-06-07 13:21:46 +00:00
Message chunks containing token usage will be included during streaming by
default :
. . code - block : : python
stream = llm . stream ( messages )
full = next ( stream )
for chunk in stream :
full + = chunk
full . usage_metadata
. . code - block : : python
{ ' input_tokens ' : 25 , ' output_tokens ' : 11 , ' total_tokens ' : 36 }
These can be disabled by setting ` ` stream_usage = False ` ` in the stream method ,
or by setting ` ` stream_usage = False ` ` when initializing ChatAnthropic .
2024-06-04 19:42:06 +00:00
Response metadata
. . code - block : : python
ai_msg = llm . invoke ( messages )
ai_msg . response_metadata
. . code - block : : python
{ ' id ' : ' msg_013xU6FHEGEq76aP4RgFerVT ' ,
' model ' : ' claude-3-sonnet-20240229 ' ,
' stop_reason ' : ' end_turn ' ,
' stop_sequence ' : None ,
' usage ' : { ' input_tokens ' : 25 , ' output_tokens ' : 11 } }
""" # noqa: E501
2023-12-20 02:55:19 +00:00
2024-02-26 05:57:26 +00:00
class Config :
""" Configuration for this pydantic object. """
allow_population_by_field_name = True
_client : anthropic . Client = Field ( default = None )
_async_client : anthropic . AsyncClient = Field ( default = None )
2023-12-20 02:55:19 +00:00
2024-05-21 17:28:32 +00:00
model : str = Field ( alias = " model_name " )
2023-12-20 02:55:19 +00:00
""" Model name to use. """
2024-03-04 15:03:51 +00:00
max_tokens : int = Field ( default = 1024 , alias = " max_tokens_to_sample " )
2023-12-20 02:55:19 +00:00
""" Denotes the number of tokens to predict per generation. """
temperature : Optional [ float ] = None
""" A non-negative float that tunes the degree of randomness in generation. """
top_k : Optional [ int ] = None
""" Number of most likely tokens to consider at each step. """
top_p : Optional [ float ] = None
""" Total probability mass of tokens to consider at each step. """
2024-04-08 17:09:06 +00:00
default_request_timeout : Optional [ float ] = Field ( None , alias = " timeout " )
2024-04-08 21:04:17 +00:00
""" Timeout for requests to Anthropic Completion API. """
# sdk default = 2: https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#retries
max_retries : int = 2
""" Number of retries allowed for requests sent to the Anthropic Completion API. """
2023-12-20 02:55:19 +00:00
2024-06-06 16:29:10 +00:00
stop_sequences : Optional [ List [ str ] ] = Field ( None , alias = " stop " )
2024-06-06 16:11:52 +00:00
""" Default stop sequences. """
2024-06-04 19:42:06 +00:00
anthropic_api_url : Optional [ str ] = Field ( None , alias = " base_url " )
""" Base URL for API requests. Only specify if using a proxy or service emulator.
2024-07-02 19:16:20 +00:00
2024-06-04 19:42:06 +00:00
If a value isn ' t passed in and environment variable ANTHROPIC_BASE_URL is set, value
will be read from there .
"""
2023-12-20 02:55:19 +00:00
2024-04-08 17:09:06 +00:00
anthropic_api_key : Optional [ SecretStr ] = Field ( None , alias = " api_key " )
""" Automatically read from env var `ANTHROPIC_API_KEY` if not provided. """
2023-12-20 02:55:19 +00:00
2024-04-04 20:22:48 +00:00
default_headers : Optional [ Mapping [ str , str ] ] = None
""" Headers to pass to the Anthropic clients, will be used for every API call. """
2023-12-20 02:55:19 +00:00
model_kwargs : Dict [ str , Any ] = Field ( default_factory = dict )
2024-03-08 21:32:57 +00:00
streaming : bool = False
""" Whether to use streaming or not. """
anthropic: refactor streaming to use events api; add streaming usage metadata (#22628)
- Refactor streaming to use raw events;
- Add `stream_usage` class attribute and kwarg to stream methods that,
if True, will include separate chunks in the stream containing usage
metadata.
There are two ways to implement streaming with anthropic's python sdk.
They have slight differences in how they surface usage metadata.
1. [Use helper
functions](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-helpers).
This is what we are doing now.
```python
count = 1
with client.messages.stream(**params) as stream:
for text in stream.text_stream:
snapshot = stream.current_message_snapshot
print(f"{count}: {snapshot.usage} -- {text}")
count = count + 1
final_snapshot = stream.get_final_message()
print(f"{count}: {final_snapshot.usage}")
```
```
1: Usage(input_tokens=8, output_tokens=1) -- Hello
2: Usage(input_tokens=8, output_tokens=1) -- !
3: Usage(input_tokens=8, output_tokens=1) -- How
4: Usage(input_tokens=8, output_tokens=1) -- can
5: Usage(input_tokens=8, output_tokens=1) -- I
6: Usage(input_tokens=8, output_tokens=1) -- assist
7: Usage(input_tokens=8, output_tokens=1) -- you
8: Usage(input_tokens=8, output_tokens=1) -- today
9: Usage(input_tokens=8, output_tokens=1) -- ?
10: Usage(input_tokens=8, output_tokens=12)
```
To do this correctly, we need to emit a new chunk at the end of the
stream containing the usage metadata.
2. [Handle raw
events](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-responses)
```python
stream = client.messages.create(**params, stream=True)
count = 1
for event in stream:
print(f"{count}: {event}")
count = count + 1
```
```
1: RawMessageStartEvent(message=Message(id='msg_01Vdyov2kADZTXqSKkfNJXcS', content=[], model='claude-3-haiku-20240307', role='assistant', stop_reason=None, stop_sequence=None, type='message', usage=Usage(input_tokens=8, output_tokens=1)), type='message_start')
2: RawContentBlockStartEvent(content_block=TextBlock(text='', type='text'), index=0, type='content_block_start')
3: RawContentBlockDeltaEvent(delta=TextDelta(text='Hello', type='text_delta'), index=0, type='content_block_delta')
4: RawContentBlockDeltaEvent(delta=TextDelta(text='!', type='text_delta'), index=0, type='content_block_delta')
5: RawContentBlockDeltaEvent(delta=TextDelta(text=' How', type='text_delta'), index=0, type='content_block_delta')
6: RawContentBlockDeltaEvent(delta=TextDelta(text=' can', type='text_delta'), index=0, type='content_block_delta')
7: RawContentBlockDeltaEvent(delta=TextDelta(text=' I', type='text_delta'), index=0, type='content_block_delta')
8: RawContentBlockDeltaEvent(delta=TextDelta(text=' assist', type='text_delta'), index=0, type='content_block_delta')
9: RawContentBlockDeltaEvent(delta=TextDelta(text=' you', type='text_delta'), index=0, type='content_block_delta')
10: RawContentBlockDeltaEvent(delta=TextDelta(text=' today', type='text_delta'), index=0, type='content_block_delta')
11: RawContentBlockDeltaEvent(delta=TextDelta(text='?', type='text_delta'), index=0, type='content_block_delta')
12: RawContentBlockStopEvent(index=0, type='content_block_stop')
13: RawMessageDeltaEvent(delta=Delta(stop_reason='end_turn', stop_sequence=None), type='message_delta', usage=MessageDeltaUsage(output_tokens=12))
14: RawMessageStopEvent(type='message_stop')
```
Here we implement the second option, in part because it should make
things easier when implementing streaming tool calls in the near future.
This would add two new chunks to the stream-- one at the beginning and
one at the end-- with blank content and containing usage metadata. We
add kwargs to the stream methods and a class attribute allowing for this
behavior to be toggled. I enabled it by default. If we merge this we can
add the same kwargs / attribute to OpenAI.
Usage:
```python
from langchain_anthropic import ChatAnthropic
model = ChatAnthropic(
model="claude-3-haiku-20240307",
temperature=0
)
full = None
for chunk in model.stream("hi"):
full = chunk if full is None else full + chunk
print(chunk)
print(f"\nFull: {full}")
```
```
content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 0, 'total_tokens': 8}
content='Hello' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='!' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' How' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' can' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' I' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' assist' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' you' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' today' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='?' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 0, 'output_tokens': 12, 'total_tokens': 12}
Full: content='Hello! How can I assist you today?' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 12, 'total_tokens': 20}
```
2024-06-07 13:21:46 +00:00
stream_usage : bool = True
""" Whether to include usage metadata in streaming output. If True, additional
message chunks will be generated during the stream including usage metadata .
"""
2023-12-20 02:55:19 +00:00
@property
def _llm_type ( self ) - > str :
""" Return type of chat model. """
2024-03-05 03:25:19 +00:00
return " anthropic-chat "
2023-12-20 02:55:19 +00:00
2024-04-16 23:05:58 +00:00
@property
def lc_secrets ( self ) - > Dict [ str , str ] :
return { " anthropic_api_key " : " ANTHROPIC_API_KEY " }
@classmethod
def is_lc_serializable ( cls ) - > bool :
return True
@classmethod
def get_lc_namespace ( cls ) - > List [ str ] :
""" Get the namespace of the langchain object. """
return [ " langchain " , " chat_models " , " anthropic " ]
@property
def _identifying_params ( self ) - > Dict [ str , Any ] :
""" Get the identifying parameters. """
return {
" model " : self . model ,
" max_tokens " : self . max_tokens ,
" temperature " : self . temperature ,
" top_k " : self . top_k ,
" top_p " : self . top_p ,
" model_kwargs " : self . model_kwargs ,
" streaming " : self . streaming ,
" max_retries " : self . max_retries ,
" default_request_timeout " : self . default_request_timeout ,
}
2024-05-17 17:51:26 +00:00
def _get_ls_params (
self , stop : Optional [ List [ str ] ] = None , * * kwargs : Any
) - > LangSmithParams :
""" Get the parameters used to invoke the model. """
params = self . _get_invocation_params ( stop = stop , * * kwargs )
ls_params = LangSmithParams (
ls_provider = " anthropic " ,
ls_model_name = self . model ,
ls_model_type = " chat " ,
ls_temperature = params . get ( " temperature " , self . temperature ) ,
)
if ls_max_tokens := params . get ( " max_tokens " , self . max_tokens ) :
ls_params [ " ls_max_tokens " ] = ls_max_tokens
if ls_stop := stop or params . get ( " stop " , None ) :
ls_params [ " ls_stop " ] = ls_stop
return ls_params
2024-02-26 05:57:26 +00:00
@root_validator ( pre = True )
def build_extra ( cls , values : Dict ) - > Dict :
extra = values . get ( " model_kwargs " , { } )
all_required_field_names = get_pydantic_field_names ( cls )
values [ " model_kwargs " ] = build_extra_kwargs (
extra , values , all_required_field_names
)
return values
2023-12-20 02:55:19 +00:00
@root_validator ( )
def validate_environment ( cls , values : Dict ) - > Dict :
anthropic_api_key = convert_to_secret_str (
values . get ( " anthropic_api_key " ) or os . environ . get ( " ANTHROPIC_API_KEY " ) or " "
)
values [ " anthropic_api_key " ] = anthropic_api_key
2024-03-21 04:04:55 +00:00
api_key = anthropic_api_key . get_secret_value ( )
api_url = (
values . get ( " anthropic_api_url " )
or os . environ . get ( " ANTHROPIC_API_URL " )
2024-06-04 19:42:06 +00:00
or os . environ . get ( " ANTHROPIC_BASE_URL " )
2024-03-21 04:04:55 +00:00
or " https://api.anthropic.com "
2023-12-20 02:55:19 +00:00
)
2024-03-21 04:04:55 +00:00
values [ " anthropic_api_url " ] = api_url
2024-04-08 21:04:17 +00:00
client_params = {
" api_key " : api_key ,
" base_url " : api_url ,
" max_retries " : values [ " max_retries " ] ,
" default_headers " : values . get ( " default_headers " ) ,
}
# value <= 0 indicates the param should be ignored. None is a meaningful value
# for Anthropic client and treated differently than not specifying the param at
# all.
if (
values [ " default_request_timeout " ] is None
or values [ " default_request_timeout " ] > 0
) :
client_params [ " timeout " ] = values [ " default_request_timeout " ]
values [ " _client " ] = anthropic . Client ( * * client_params )
values [ " _async_client " ] = anthropic . AsyncClient ( * * client_params )
2023-12-20 02:55:19 +00:00
return values
2024-07-02 21:43:47 +00:00
def _get_request_payload (
2023-12-20 02:55:19 +00:00
self ,
2024-07-02 21:43:47 +00:00
input_ : LanguageModelInput ,
2023-12-20 02:55:19 +00:00
* ,
stop : Optional [ List [ str ] ] = None ,
* * kwargs : Dict ,
) - > Dict :
2024-07-02 21:43:47 +00:00
messages = self . _convert_input ( input_ ) . to_messages ( )
2023-12-20 02:55:19 +00:00
system , formatted_messages = _format_messages ( messages )
2024-07-02 21:43:47 +00:00
payload = {
2023-12-20 02:55:19 +00:00
" model " : self . model ,
" max_tokens " : self . max_tokens ,
" messages " : formatted_messages ,
" temperature " : self . temperature ,
" top_k " : self . top_k ,
" top_p " : self . top_p ,
2024-07-02 21:43:47 +00:00
" stop_sequences " : stop or self . stop_sequences ,
2023-12-20 02:55:19 +00:00
" system " : system ,
2024-02-26 05:57:26 +00:00
* * self . model_kwargs ,
2024-04-04 20:22:48 +00:00
* * kwargs ,
2023-12-20 02:55:19 +00:00
}
2024-07-02 21:43:47 +00:00
return { k : v for k , v in payload . items ( ) if v is not None }
2023-12-20 02:55:19 +00:00
def _stream (
self ,
messages : List [ BaseMessage ] ,
stop : Optional [ List [ str ] ] = None ,
run_manager : Optional [ CallbackManagerForLLMRun ] = None ,
anthropic: refactor streaming to use events api; add streaming usage metadata (#22628)
- Refactor streaming to use raw events;
- Add `stream_usage` class attribute and kwarg to stream methods that,
if True, will include separate chunks in the stream containing usage
metadata.
There are two ways to implement streaming with anthropic's python sdk.
They have slight differences in how they surface usage metadata.
1. [Use helper
functions](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-helpers).
This is what we are doing now.
```python
count = 1
with client.messages.stream(**params) as stream:
for text in stream.text_stream:
snapshot = stream.current_message_snapshot
print(f"{count}: {snapshot.usage} -- {text}")
count = count + 1
final_snapshot = stream.get_final_message()
print(f"{count}: {final_snapshot.usage}")
```
```
1: Usage(input_tokens=8, output_tokens=1) -- Hello
2: Usage(input_tokens=8, output_tokens=1) -- !
3: Usage(input_tokens=8, output_tokens=1) -- How
4: Usage(input_tokens=8, output_tokens=1) -- can
5: Usage(input_tokens=8, output_tokens=1) -- I
6: Usage(input_tokens=8, output_tokens=1) -- assist
7: Usage(input_tokens=8, output_tokens=1) -- you
8: Usage(input_tokens=8, output_tokens=1) -- today
9: Usage(input_tokens=8, output_tokens=1) -- ?
10: Usage(input_tokens=8, output_tokens=12)
```
To do this correctly, we need to emit a new chunk at the end of the
stream containing the usage metadata.
2. [Handle raw
events](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-responses)
```python
stream = client.messages.create(**params, stream=True)
count = 1
for event in stream:
print(f"{count}: {event}")
count = count + 1
```
```
1: RawMessageStartEvent(message=Message(id='msg_01Vdyov2kADZTXqSKkfNJXcS', content=[], model='claude-3-haiku-20240307', role='assistant', stop_reason=None, stop_sequence=None, type='message', usage=Usage(input_tokens=8, output_tokens=1)), type='message_start')
2: RawContentBlockStartEvent(content_block=TextBlock(text='', type='text'), index=0, type='content_block_start')
3: RawContentBlockDeltaEvent(delta=TextDelta(text='Hello', type='text_delta'), index=0, type='content_block_delta')
4: RawContentBlockDeltaEvent(delta=TextDelta(text='!', type='text_delta'), index=0, type='content_block_delta')
5: RawContentBlockDeltaEvent(delta=TextDelta(text=' How', type='text_delta'), index=0, type='content_block_delta')
6: RawContentBlockDeltaEvent(delta=TextDelta(text=' can', type='text_delta'), index=0, type='content_block_delta')
7: RawContentBlockDeltaEvent(delta=TextDelta(text=' I', type='text_delta'), index=0, type='content_block_delta')
8: RawContentBlockDeltaEvent(delta=TextDelta(text=' assist', type='text_delta'), index=0, type='content_block_delta')
9: RawContentBlockDeltaEvent(delta=TextDelta(text=' you', type='text_delta'), index=0, type='content_block_delta')
10: RawContentBlockDeltaEvent(delta=TextDelta(text=' today', type='text_delta'), index=0, type='content_block_delta')
11: RawContentBlockDeltaEvent(delta=TextDelta(text='?', type='text_delta'), index=0, type='content_block_delta')
12: RawContentBlockStopEvent(index=0, type='content_block_stop')
13: RawMessageDeltaEvent(delta=Delta(stop_reason='end_turn', stop_sequence=None), type='message_delta', usage=MessageDeltaUsage(output_tokens=12))
14: RawMessageStopEvent(type='message_stop')
```
Here we implement the second option, in part because it should make
things easier when implementing streaming tool calls in the near future.
This would add two new chunks to the stream-- one at the beginning and
one at the end-- with blank content and containing usage metadata. We
add kwargs to the stream methods and a class attribute allowing for this
behavior to be toggled. I enabled it by default. If we merge this we can
add the same kwargs / attribute to OpenAI.
Usage:
```python
from langchain_anthropic import ChatAnthropic
model = ChatAnthropic(
model="claude-3-haiku-20240307",
temperature=0
)
full = None
for chunk in model.stream("hi"):
full = chunk if full is None else full + chunk
print(chunk)
print(f"\nFull: {full}")
```
```
content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 0, 'total_tokens': 8}
content='Hello' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='!' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' How' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' can' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' I' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' assist' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' you' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' today' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='?' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 0, 'output_tokens': 12, 'total_tokens': 12}
Full: content='Hello! How can I assist you today?' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 12, 'total_tokens': 20}
```
2024-06-07 13:21:46 +00:00
* ,
stream_usage : Optional [ bool ] = None ,
2023-12-20 02:55:19 +00:00
* * kwargs : Any ,
) - > Iterator [ ChatGenerationChunk ] :
anthropic: refactor streaming to use events api; add streaming usage metadata (#22628)
- Refactor streaming to use raw events;
- Add `stream_usage` class attribute and kwarg to stream methods that,
if True, will include separate chunks in the stream containing usage
metadata.
There are two ways to implement streaming with anthropic's python sdk.
They have slight differences in how they surface usage metadata.
1. [Use helper
functions](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-helpers).
This is what we are doing now.
```python
count = 1
with client.messages.stream(**params) as stream:
for text in stream.text_stream:
snapshot = stream.current_message_snapshot
print(f"{count}: {snapshot.usage} -- {text}")
count = count + 1
final_snapshot = stream.get_final_message()
print(f"{count}: {final_snapshot.usage}")
```
```
1: Usage(input_tokens=8, output_tokens=1) -- Hello
2: Usage(input_tokens=8, output_tokens=1) -- !
3: Usage(input_tokens=8, output_tokens=1) -- How
4: Usage(input_tokens=8, output_tokens=1) -- can
5: Usage(input_tokens=8, output_tokens=1) -- I
6: Usage(input_tokens=8, output_tokens=1) -- assist
7: Usage(input_tokens=8, output_tokens=1) -- you
8: Usage(input_tokens=8, output_tokens=1) -- today
9: Usage(input_tokens=8, output_tokens=1) -- ?
10: Usage(input_tokens=8, output_tokens=12)
```
To do this correctly, we need to emit a new chunk at the end of the
stream containing the usage metadata.
2. [Handle raw
events](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-responses)
```python
stream = client.messages.create(**params, stream=True)
count = 1
for event in stream:
print(f"{count}: {event}")
count = count + 1
```
```
1: RawMessageStartEvent(message=Message(id='msg_01Vdyov2kADZTXqSKkfNJXcS', content=[], model='claude-3-haiku-20240307', role='assistant', stop_reason=None, stop_sequence=None, type='message', usage=Usage(input_tokens=8, output_tokens=1)), type='message_start')
2: RawContentBlockStartEvent(content_block=TextBlock(text='', type='text'), index=0, type='content_block_start')
3: RawContentBlockDeltaEvent(delta=TextDelta(text='Hello', type='text_delta'), index=0, type='content_block_delta')
4: RawContentBlockDeltaEvent(delta=TextDelta(text='!', type='text_delta'), index=0, type='content_block_delta')
5: RawContentBlockDeltaEvent(delta=TextDelta(text=' How', type='text_delta'), index=0, type='content_block_delta')
6: RawContentBlockDeltaEvent(delta=TextDelta(text=' can', type='text_delta'), index=0, type='content_block_delta')
7: RawContentBlockDeltaEvent(delta=TextDelta(text=' I', type='text_delta'), index=0, type='content_block_delta')
8: RawContentBlockDeltaEvent(delta=TextDelta(text=' assist', type='text_delta'), index=0, type='content_block_delta')
9: RawContentBlockDeltaEvent(delta=TextDelta(text=' you', type='text_delta'), index=0, type='content_block_delta')
10: RawContentBlockDeltaEvent(delta=TextDelta(text=' today', type='text_delta'), index=0, type='content_block_delta')
11: RawContentBlockDeltaEvent(delta=TextDelta(text='?', type='text_delta'), index=0, type='content_block_delta')
12: RawContentBlockStopEvent(index=0, type='content_block_stop')
13: RawMessageDeltaEvent(delta=Delta(stop_reason='end_turn', stop_sequence=None), type='message_delta', usage=MessageDeltaUsage(output_tokens=12))
14: RawMessageStopEvent(type='message_stop')
```
Here we implement the second option, in part because it should make
things easier when implementing streaming tool calls in the near future.
This would add two new chunks to the stream-- one at the beginning and
one at the end-- with blank content and containing usage metadata. We
add kwargs to the stream methods and a class attribute allowing for this
behavior to be toggled. I enabled it by default. If we merge this we can
add the same kwargs / attribute to OpenAI.
Usage:
```python
from langchain_anthropic import ChatAnthropic
model = ChatAnthropic(
model="claude-3-haiku-20240307",
temperature=0
)
full = None
for chunk in model.stream("hi"):
full = chunk if full is None else full + chunk
print(chunk)
print(f"\nFull: {full}")
```
```
content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 0, 'total_tokens': 8}
content='Hello' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='!' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' How' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' can' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' I' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' assist' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' you' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' today' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='?' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 0, 'output_tokens': 12, 'total_tokens': 12}
Full: content='Hello! How can I assist you today?' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 12, 'total_tokens': 20}
```
2024-06-07 13:21:46 +00:00
if stream_usage is None :
stream_usage = self . stream_usage
2024-07-02 21:43:47 +00:00
kwargs [ " stream " ] = True
payload = self . _get_request_payload ( messages , stop = stop , * * kwargs )
stream = self . _client . messages . create ( * * payload )
coerce_content_to_string = not _tools_in_params ( payload )
anthropic: refactor streaming to use events api; add streaming usage metadata (#22628)
- Refactor streaming to use raw events;
- Add `stream_usage` class attribute and kwarg to stream methods that,
if True, will include separate chunks in the stream containing usage
metadata.
There are two ways to implement streaming with anthropic's python sdk.
They have slight differences in how they surface usage metadata.
1. [Use helper
functions](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-helpers).
This is what we are doing now.
```python
count = 1
with client.messages.stream(**params) as stream:
for text in stream.text_stream:
snapshot = stream.current_message_snapshot
print(f"{count}: {snapshot.usage} -- {text}")
count = count + 1
final_snapshot = stream.get_final_message()
print(f"{count}: {final_snapshot.usage}")
```
```
1: Usage(input_tokens=8, output_tokens=1) -- Hello
2: Usage(input_tokens=8, output_tokens=1) -- !
3: Usage(input_tokens=8, output_tokens=1) -- How
4: Usage(input_tokens=8, output_tokens=1) -- can
5: Usage(input_tokens=8, output_tokens=1) -- I
6: Usage(input_tokens=8, output_tokens=1) -- assist
7: Usage(input_tokens=8, output_tokens=1) -- you
8: Usage(input_tokens=8, output_tokens=1) -- today
9: Usage(input_tokens=8, output_tokens=1) -- ?
10: Usage(input_tokens=8, output_tokens=12)
```
To do this correctly, we need to emit a new chunk at the end of the
stream containing the usage metadata.
2. [Handle raw
events](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-responses)
```python
stream = client.messages.create(**params, stream=True)
count = 1
for event in stream:
print(f"{count}: {event}")
count = count + 1
```
```
1: RawMessageStartEvent(message=Message(id='msg_01Vdyov2kADZTXqSKkfNJXcS', content=[], model='claude-3-haiku-20240307', role='assistant', stop_reason=None, stop_sequence=None, type='message', usage=Usage(input_tokens=8, output_tokens=1)), type='message_start')
2: RawContentBlockStartEvent(content_block=TextBlock(text='', type='text'), index=0, type='content_block_start')
3: RawContentBlockDeltaEvent(delta=TextDelta(text='Hello', type='text_delta'), index=0, type='content_block_delta')
4: RawContentBlockDeltaEvent(delta=TextDelta(text='!', type='text_delta'), index=0, type='content_block_delta')
5: RawContentBlockDeltaEvent(delta=TextDelta(text=' How', type='text_delta'), index=0, type='content_block_delta')
6: RawContentBlockDeltaEvent(delta=TextDelta(text=' can', type='text_delta'), index=0, type='content_block_delta')
7: RawContentBlockDeltaEvent(delta=TextDelta(text=' I', type='text_delta'), index=0, type='content_block_delta')
8: RawContentBlockDeltaEvent(delta=TextDelta(text=' assist', type='text_delta'), index=0, type='content_block_delta')
9: RawContentBlockDeltaEvent(delta=TextDelta(text=' you', type='text_delta'), index=0, type='content_block_delta')
10: RawContentBlockDeltaEvent(delta=TextDelta(text=' today', type='text_delta'), index=0, type='content_block_delta')
11: RawContentBlockDeltaEvent(delta=TextDelta(text='?', type='text_delta'), index=0, type='content_block_delta')
12: RawContentBlockStopEvent(index=0, type='content_block_stop')
13: RawMessageDeltaEvent(delta=Delta(stop_reason='end_turn', stop_sequence=None), type='message_delta', usage=MessageDeltaUsage(output_tokens=12))
14: RawMessageStopEvent(type='message_stop')
```
Here we implement the second option, in part because it should make
things easier when implementing streaming tool calls in the near future.
This would add two new chunks to the stream-- one at the beginning and
one at the end-- with blank content and containing usage metadata. We
add kwargs to the stream methods and a class attribute allowing for this
behavior to be toggled. I enabled it by default. If we merge this we can
add the same kwargs / attribute to OpenAI.
Usage:
```python
from langchain_anthropic import ChatAnthropic
model = ChatAnthropic(
model="claude-3-haiku-20240307",
temperature=0
)
full = None
for chunk in model.stream("hi"):
full = chunk if full is None else full + chunk
print(chunk)
print(f"\nFull: {full}")
```
```
content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 0, 'total_tokens': 8}
content='Hello' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='!' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' How' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' can' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' I' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' assist' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' you' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' today' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='?' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 0, 'output_tokens': 12, 'total_tokens': 12}
Full: content='Hello! How can I assist you today?' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 12, 'total_tokens': 20}
```
2024-06-07 13:21:46 +00:00
for event in stream :
msg = _make_message_chunk_from_anthropic_event (
anthropic[minor]: Adds streaming tool call support for Anthropic (#22687)
Preserves string content chunks for non tool call requests for
convenience.
One thing - Anthropic events look like this:
```
RawContentBlockStartEvent(content_block=TextBlock(text='', type='text'), index=0, type='content_block_start')
RawContentBlockDeltaEvent(delta=TextDelta(text='<thinking>\nThe', type='text_delta'), index=0, type='content_block_delta')
RawContentBlockDeltaEvent(delta=TextDelta(text=' provide', type='text_delta'), index=0, type='content_block_delta')
...
RawContentBlockStartEvent(content_block=ToolUseBlock(id='toolu_01GJ6x2ddcMG3psDNNe4eDqb', input={}, name='get_weather', type='tool_use'), index=1, type='content_block_start')
RawContentBlockDeltaEvent(delta=InputJsonDelta(partial_json='', type='input_json_delta'), index=1, type='content_block_delta')
```
Note that `delta` has a `type` field. With this implementation, I'm
dropping it because `merge_list` behavior will concatenate strings.
We currently have `index` as a special field when merging lists, would
it be worth adding `type` too?
If so, what do we set as a context block chunk? `text` vs.
`text_delta`/`tool_use` vs `input_json_delta`?
CC @ccurme @efriis @baskaryan
2024-06-14 16:14:43 +00:00
event ,
stream_usage = stream_usage ,
coerce_content_to_string = coerce_content_to_string ,
anthropic: refactor streaming to use events api; add streaming usage metadata (#22628)
- Refactor streaming to use raw events;
- Add `stream_usage` class attribute and kwarg to stream methods that,
if True, will include separate chunks in the stream containing usage
metadata.
There are two ways to implement streaming with anthropic's python sdk.
They have slight differences in how they surface usage metadata.
1. [Use helper
functions](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-helpers).
This is what we are doing now.
```python
count = 1
with client.messages.stream(**params) as stream:
for text in stream.text_stream:
snapshot = stream.current_message_snapshot
print(f"{count}: {snapshot.usage} -- {text}")
count = count + 1
final_snapshot = stream.get_final_message()
print(f"{count}: {final_snapshot.usage}")
```
```
1: Usage(input_tokens=8, output_tokens=1) -- Hello
2: Usage(input_tokens=8, output_tokens=1) -- !
3: Usage(input_tokens=8, output_tokens=1) -- How
4: Usage(input_tokens=8, output_tokens=1) -- can
5: Usage(input_tokens=8, output_tokens=1) -- I
6: Usage(input_tokens=8, output_tokens=1) -- assist
7: Usage(input_tokens=8, output_tokens=1) -- you
8: Usage(input_tokens=8, output_tokens=1) -- today
9: Usage(input_tokens=8, output_tokens=1) -- ?
10: Usage(input_tokens=8, output_tokens=12)
```
To do this correctly, we need to emit a new chunk at the end of the
stream containing the usage metadata.
2. [Handle raw
events](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-responses)
```python
stream = client.messages.create(**params, stream=True)
count = 1
for event in stream:
print(f"{count}: {event}")
count = count + 1
```
```
1: RawMessageStartEvent(message=Message(id='msg_01Vdyov2kADZTXqSKkfNJXcS', content=[], model='claude-3-haiku-20240307', role='assistant', stop_reason=None, stop_sequence=None, type='message', usage=Usage(input_tokens=8, output_tokens=1)), type='message_start')
2: RawContentBlockStartEvent(content_block=TextBlock(text='', type='text'), index=0, type='content_block_start')
3: RawContentBlockDeltaEvent(delta=TextDelta(text='Hello', type='text_delta'), index=0, type='content_block_delta')
4: RawContentBlockDeltaEvent(delta=TextDelta(text='!', type='text_delta'), index=0, type='content_block_delta')
5: RawContentBlockDeltaEvent(delta=TextDelta(text=' How', type='text_delta'), index=0, type='content_block_delta')
6: RawContentBlockDeltaEvent(delta=TextDelta(text=' can', type='text_delta'), index=0, type='content_block_delta')
7: RawContentBlockDeltaEvent(delta=TextDelta(text=' I', type='text_delta'), index=0, type='content_block_delta')
8: RawContentBlockDeltaEvent(delta=TextDelta(text=' assist', type='text_delta'), index=0, type='content_block_delta')
9: RawContentBlockDeltaEvent(delta=TextDelta(text=' you', type='text_delta'), index=0, type='content_block_delta')
10: RawContentBlockDeltaEvent(delta=TextDelta(text=' today', type='text_delta'), index=0, type='content_block_delta')
11: RawContentBlockDeltaEvent(delta=TextDelta(text='?', type='text_delta'), index=0, type='content_block_delta')
12: RawContentBlockStopEvent(index=0, type='content_block_stop')
13: RawMessageDeltaEvent(delta=Delta(stop_reason='end_turn', stop_sequence=None), type='message_delta', usage=MessageDeltaUsage(output_tokens=12))
14: RawMessageStopEvent(type='message_stop')
```
Here we implement the second option, in part because it should make
things easier when implementing streaming tool calls in the near future.
This would add two new chunks to the stream-- one at the beginning and
one at the end-- with blank content and containing usage metadata. We
add kwargs to the stream methods and a class attribute allowing for this
behavior to be toggled. I enabled it by default. If we merge this we can
add the same kwargs / attribute to OpenAI.
Usage:
```python
from langchain_anthropic import ChatAnthropic
model = ChatAnthropic(
model="claude-3-haiku-20240307",
temperature=0
)
full = None
for chunk in model.stream("hi"):
full = chunk if full is None else full + chunk
print(chunk)
print(f"\nFull: {full}")
```
```
content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 0, 'total_tokens': 8}
content='Hello' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='!' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' How' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' can' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' I' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' assist' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' you' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' today' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='?' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 0, 'output_tokens': 12, 'total_tokens': 12}
Full: content='Hello! How can I assist you today?' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 12, 'total_tokens': 20}
```
2024-06-07 13:21:46 +00:00
)
if msg is not None :
chunk = ChatGenerationChunk ( message = msg )
if run_manager and isinstance ( msg . content , str ) :
run_manager . on_llm_new_token ( msg . content , chunk = chunk )
2024-02-26 05:57:26 +00:00
yield chunk
2023-12-20 02:55:19 +00:00
async def _astream (
self ,
messages : List [ BaseMessage ] ,
stop : Optional [ List [ str ] ] = None ,
run_manager : Optional [ AsyncCallbackManagerForLLMRun ] = None ,
anthropic: refactor streaming to use events api; add streaming usage metadata (#22628)
- Refactor streaming to use raw events;
- Add `stream_usage` class attribute and kwarg to stream methods that,
if True, will include separate chunks in the stream containing usage
metadata.
There are two ways to implement streaming with anthropic's python sdk.
They have slight differences in how they surface usage metadata.
1. [Use helper
functions](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-helpers).
This is what we are doing now.
```python
count = 1
with client.messages.stream(**params) as stream:
for text in stream.text_stream:
snapshot = stream.current_message_snapshot
print(f"{count}: {snapshot.usage} -- {text}")
count = count + 1
final_snapshot = stream.get_final_message()
print(f"{count}: {final_snapshot.usage}")
```
```
1: Usage(input_tokens=8, output_tokens=1) -- Hello
2: Usage(input_tokens=8, output_tokens=1) -- !
3: Usage(input_tokens=8, output_tokens=1) -- How
4: Usage(input_tokens=8, output_tokens=1) -- can
5: Usage(input_tokens=8, output_tokens=1) -- I
6: Usage(input_tokens=8, output_tokens=1) -- assist
7: Usage(input_tokens=8, output_tokens=1) -- you
8: Usage(input_tokens=8, output_tokens=1) -- today
9: Usage(input_tokens=8, output_tokens=1) -- ?
10: Usage(input_tokens=8, output_tokens=12)
```
To do this correctly, we need to emit a new chunk at the end of the
stream containing the usage metadata.
2. [Handle raw
events](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-responses)
```python
stream = client.messages.create(**params, stream=True)
count = 1
for event in stream:
print(f"{count}: {event}")
count = count + 1
```
```
1: RawMessageStartEvent(message=Message(id='msg_01Vdyov2kADZTXqSKkfNJXcS', content=[], model='claude-3-haiku-20240307', role='assistant', stop_reason=None, stop_sequence=None, type='message', usage=Usage(input_tokens=8, output_tokens=1)), type='message_start')
2: RawContentBlockStartEvent(content_block=TextBlock(text='', type='text'), index=0, type='content_block_start')
3: RawContentBlockDeltaEvent(delta=TextDelta(text='Hello', type='text_delta'), index=0, type='content_block_delta')
4: RawContentBlockDeltaEvent(delta=TextDelta(text='!', type='text_delta'), index=0, type='content_block_delta')
5: RawContentBlockDeltaEvent(delta=TextDelta(text=' How', type='text_delta'), index=0, type='content_block_delta')
6: RawContentBlockDeltaEvent(delta=TextDelta(text=' can', type='text_delta'), index=0, type='content_block_delta')
7: RawContentBlockDeltaEvent(delta=TextDelta(text=' I', type='text_delta'), index=0, type='content_block_delta')
8: RawContentBlockDeltaEvent(delta=TextDelta(text=' assist', type='text_delta'), index=0, type='content_block_delta')
9: RawContentBlockDeltaEvent(delta=TextDelta(text=' you', type='text_delta'), index=0, type='content_block_delta')
10: RawContentBlockDeltaEvent(delta=TextDelta(text=' today', type='text_delta'), index=0, type='content_block_delta')
11: RawContentBlockDeltaEvent(delta=TextDelta(text='?', type='text_delta'), index=0, type='content_block_delta')
12: RawContentBlockStopEvent(index=0, type='content_block_stop')
13: RawMessageDeltaEvent(delta=Delta(stop_reason='end_turn', stop_sequence=None), type='message_delta', usage=MessageDeltaUsage(output_tokens=12))
14: RawMessageStopEvent(type='message_stop')
```
Here we implement the second option, in part because it should make
things easier when implementing streaming tool calls in the near future.
This would add two new chunks to the stream-- one at the beginning and
one at the end-- with blank content and containing usage metadata. We
add kwargs to the stream methods and a class attribute allowing for this
behavior to be toggled. I enabled it by default. If we merge this we can
add the same kwargs / attribute to OpenAI.
Usage:
```python
from langchain_anthropic import ChatAnthropic
model = ChatAnthropic(
model="claude-3-haiku-20240307",
temperature=0
)
full = None
for chunk in model.stream("hi"):
full = chunk if full is None else full + chunk
print(chunk)
print(f"\nFull: {full}")
```
```
content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 0, 'total_tokens': 8}
content='Hello' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='!' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' How' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' can' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' I' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' assist' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' you' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' today' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='?' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 0, 'output_tokens': 12, 'total_tokens': 12}
Full: content='Hello! How can I assist you today?' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 12, 'total_tokens': 20}
```
2024-06-07 13:21:46 +00:00
* ,
stream_usage : Optional [ bool ] = None ,
2023-12-20 02:55:19 +00:00
* * kwargs : Any ,
) - > AsyncIterator [ ChatGenerationChunk ] :
anthropic: refactor streaming to use events api; add streaming usage metadata (#22628)
- Refactor streaming to use raw events;
- Add `stream_usage` class attribute and kwarg to stream methods that,
if True, will include separate chunks in the stream containing usage
metadata.
There are two ways to implement streaming with anthropic's python sdk.
They have slight differences in how they surface usage metadata.
1. [Use helper
functions](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-helpers).
This is what we are doing now.
```python
count = 1
with client.messages.stream(**params) as stream:
for text in stream.text_stream:
snapshot = stream.current_message_snapshot
print(f"{count}: {snapshot.usage} -- {text}")
count = count + 1
final_snapshot = stream.get_final_message()
print(f"{count}: {final_snapshot.usage}")
```
```
1: Usage(input_tokens=8, output_tokens=1) -- Hello
2: Usage(input_tokens=8, output_tokens=1) -- !
3: Usage(input_tokens=8, output_tokens=1) -- How
4: Usage(input_tokens=8, output_tokens=1) -- can
5: Usage(input_tokens=8, output_tokens=1) -- I
6: Usage(input_tokens=8, output_tokens=1) -- assist
7: Usage(input_tokens=8, output_tokens=1) -- you
8: Usage(input_tokens=8, output_tokens=1) -- today
9: Usage(input_tokens=8, output_tokens=1) -- ?
10: Usage(input_tokens=8, output_tokens=12)
```
To do this correctly, we need to emit a new chunk at the end of the
stream containing the usage metadata.
2. [Handle raw
events](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-responses)
```python
stream = client.messages.create(**params, stream=True)
count = 1
for event in stream:
print(f"{count}: {event}")
count = count + 1
```
```
1: RawMessageStartEvent(message=Message(id='msg_01Vdyov2kADZTXqSKkfNJXcS', content=[], model='claude-3-haiku-20240307', role='assistant', stop_reason=None, stop_sequence=None, type='message', usage=Usage(input_tokens=8, output_tokens=1)), type='message_start')
2: RawContentBlockStartEvent(content_block=TextBlock(text='', type='text'), index=0, type='content_block_start')
3: RawContentBlockDeltaEvent(delta=TextDelta(text='Hello', type='text_delta'), index=0, type='content_block_delta')
4: RawContentBlockDeltaEvent(delta=TextDelta(text='!', type='text_delta'), index=0, type='content_block_delta')
5: RawContentBlockDeltaEvent(delta=TextDelta(text=' How', type='text_delta'), index=0, type='content_block_delta')
6: RawContentBlockDeltaEvent(delta=TextDelta(text=' can', type='text_delta'), index=0, type='content_block_delta')
7: RawContentBlockDeltaEvent(delta=TextDelta(text=' I', type='text_delta'), index=0, type='content_block_delta')
8: RawContentBlockDeltaEvent(delta=TextDelta(text=' assist', type='text_delta'), index=0, type='content_block_delta')
9: RawContentBlockDeltaEvent(delta=TextDelta(text=' you', type='text_delta'), index=0, type='content_block_delta')
10: RawContentBlockDeltaEvent(delta=TextDelta(text=' today', type='text_delta'), index=0, type='content_block_delta')
11: RawContentBlockDeltaEvent(delta=TextDelta(text='?', type='text_delta'), index=0, type='content_block_delta')
12: RawContentBlockStopEvent(index=0, type='content_block_stop')
13: RawMessageDeltaEvent(delta=Delta(stop_reason='end_turn', stop_sequence=None), type='message_delta', usage=MessageDeltaUsage(output_tokens=12))
14: RawMessageStopEvent(type='message_stop')
```
Here we implement the second option, in part because it should make
things easier when implementing streaming tool calls in the near future.
This would add two new chunks to the stream-- one at the beginning and
one at the end-- with blank content and containing usage metadata. We
add kwargs to the stream methods and a class attribute allowing for this
behavior to be toggled. I enabled it by default. If we merge this we can
add the same kwargs / attribute to OpenAI.
Usage:
```python
from langchain_anthropic import ChatAnthropic
model = ChatAnthropic(
model="claude-3-haiku-20240307",
temperature=0
)
full = None
for chunk in model.stream("hi"):
full = chunk if full is None else full + chunk
print(chunk)
print(f"\nFull: {full}")
```
```
content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 0, 'total_tokens': 8}
content='Hello' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='!' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' How' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' can' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' I' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' assist' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' you' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' today' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='?' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 0, 'output_tokens': 12, 'total_tokens': 12}
Full: content='Hello! How can I assist you today?' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 12, 'total_tokens': 20}
```
2024-06-07 13:21:46 +00:00
if stream_usage is None :
stream_usage = self . stream_usage
2024-07-02 21:43:47 +00:00
kwargs [ " stream " ] = True
payload = self . _get_request_payload ( messages , stop = stop , * * kwargs )
stream = await self . _async_client . messages . create ( * * payload )
coerce_content_to_string = not _tools_in_params ( payload )
anthropic: refactor streaming to use events api; add streaming usage metadata (#22628)
- Refactor streaming to use raw events;
- Add `stream_usage` class attribute and kwarg to stream methods that,
if True, will include separate chunks in the stream containing usage
metadata.
There are two ways to implement streaming with anthropic's python sdk.
They have slight differences in how they surface usage metadata.
1. [Use helper
functions](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-helpers).
This is what we are doing now.
```python
count = 1
with client.messages.stream(**params) as stream:
for text in stream.text_stream:
snapshot = stream.current_message_snapshot
print(f"{count}: {snapshot.usage} -- {text}")
count = count + 1
final_snapshot = stream.get_final_message()
print(f"{count}: {final_snapshot.usage}")
```
```
1: Usage(input_tokens=8, output_tokens=1) -- Hello
2: Usage(input_tokens=8, output_tokens=1) -- !
3: Usage(input_tokens=8, output_tokens=1) -- How
4: Usage(input_tokens=8, output_tokens=1) -- can
5: Usage(input_tokens=8, output_tokens=1) -- I
6: Usage(input_tokens=8, output_tokens=1) -- assist
7: Usage(input_tokens=8, output_tokens=1) -- you
8: Usage(input_tokens=8, output_tokens=1) -- today
9: Usage(input_tokens=8, output_tokens=1) -- ?
10: Usage(input_tokens=8, output_tokens=12)
```
To do this correctly, we need to emit a new chunk at the end of the
stream containing the usage metadata.
2. [Handle raw
events](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-responses)
```python
stream = client.messages.create(**params, stream=True)
count = 1
for event in stream:
print(f"{count}: {event}")
count = count + 1
```
```
1: RawMessageStartEvent(message=Message(id='msg_01Vdyov2kADZTXqSKkfNJXcS', content=[], model='claude-3-haiku-20240307', role='assistant', stop_reason=None, stop_sequence=None, type='message', usage=Usage(input_tokens=8, output_tokens=1)), type='message_start')
2: RawContentBlockStartEvent(content_block=TextBlock(text='', type='text'), index=0, type='content_block_start')
3: RawContentBlockDeltaEvent(delta=TextDelta(text='Hello', type='text_delta'), index=0, type='content_block_delta')
4: RawContentBlockDeltaEvent(delta=TextDelta(text='!', type='text_delta'), index=0, type='content_block_delta')
5: RawContentBlockDeltaEvent(delta=TextDelta(text=' How', type='text_delta'), index=0, type='content_block_delta')
6: RawContentBlockDeltaEvent(delta=TextDelta(text=' can', type='text_delta'), index=0, type='content_block_delta')
7: RawContentBlockDeltaEvent(delta=TextDelta(text=' I', type='text_delta'), index=0, type='content_block_delta')
8: RawContentBlockDeltaEvent(delta=TextDelta(text=' assist', type='text_delta'), index=0, type='content_block_delta')
9: RawContentBlockDeltaEvent(delta=TextDelta(text=' you', type='text_delta'), index=0, type='content_block_delta')
10: RawContentBlockDeltaEvent(delta=TextDelta(text=' today', type='text_delta'), index=0, type='content_block_delta')
11: RawContentBlockDeltaEvent(delta=TextDelta(text='?', type='text_delta'), index=0, type='content_block_delta')
12: RawContentBlockStopEvent(index=0, type='content_block_stop')
13: RawMessageDeltaEvent(delta=Delta(stop_reason='end_turn', stop_sequence=None), type='message_delta', usage=MessageDeltaUsage(output_tokens=12))
14: RawMessageStopEvent(type='message_stop')
```
Here we implement the second option, in part because it should make
things easier when implementing streaming tool calls in the near future.
This would add two new chunks to the stream-- one at the beginning and
one at the end-- with blank content and containing usage metadata. We
add kwargs to the stream methods and a class attribute allowing for this
behavior to be toggled. I enabled it by default. If we merge this we can
add the same kwargs / attribute to OpenAI.
Usage:
```python
from langchain_anthropic import ChatAnthropic
model = ChatAnthropic(
model="claude-3-haiku-20240307",
temperature=0
)
full = None
for chunk in model.stream("hi"):
full = chunk if full is None else full + chunk
print(chunk)
print(f"\nFull: {full}")
```
```
content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 0, 'total_tokens': 8}
content='Hello' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='!' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' How' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' can' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' I' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' assist' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' you' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' today' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='?' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 0, 'output_tokens': 12, 'total_tokens': 12}
Full: content='Hello! How can I assist you today?' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 12, 'total_tokens': 20}
```
2024-06-07 13:21:46 +00:00
async for event in stream :
msg = _make_message_chunk_from_anthropic_event (
anthropic[minor]: Adds streaming tool call support for Anthropic (#22687)
Preserves string content chunks for non tool call requests for
convenience.
One thing - Anthropic events look like this:
```
RawContentBlockStartEvent(content_block=TextBlock(text='', type='text'), index=0, type='content_block_start')
RawContentBlockDeltaEvent(delta=TextDelta(text='<thinking>\nThe', type='text_delta'), index=0, type='content_block_delta')
RawContentBlockDeltaEvent(delta=TextDelta(text=' provide', type='text_delta'), index=0, type='content_block_delta')
...
RawContentBlockStartEvent(content_block=ToolUseBlock(id='toolu_01GJ6x2ddcMG3psDNNe4eDqb', input={}, name='get_weather', type='tool_use'), index=1, type='content_block_start')
RawContentBlockDeltaEvent(delta=InputJsonDelta(partial_json='', type='input_json_delta'), index=1, type='content_block_delta')
```
Note that `delta` has a `type` field. With this implementation, I'm
dropping it because `merge_list` behavior will concatenate strings.
We currently have `index` as a special field when merging lists, would
it be worth adding `type` too?
If so, what do we set as a context block chunk? `text` vs.
`text_delta`/`tool_use` vs `input_json_delta`?
CC @ccurme @efriis @baskaryan
2024-06-14 16:14:43 +00:00
event ,
stream_usage = stream_usage ,
coerce_content_to_string = coerce_content_to_string ,
anthropic: refactor streaming to use events api; add streaming usage metadata (#22628)
- Refactor streaming to use raw events;
- Add `stream_usage` class attribute and kwarg to stream methods that,
if True, will include separate chunks in the stream containing usage
metadata.
There are two ways to implement streaming with anthropic's python sdk.
They have slight differences in how they surface usage metadata.
1. [Use helper
functions](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-helpers).
This is what we are doing now.
```python
count = 1
with client.messages.stream(**params) as stream:
for text in stream.text_stream:
snapshot = stream.current_message_snapshot
print(f"{count}: {snapshot.usage} -- {text}")
count = count + 1
final_snapshot = stream.get_final_message()
print(f"{count}: {final_snapshot.usage}")
```
```
1: Usage(input_tokens=8, output_tokens=1) -- Hello
2: Usage(input_tokens=8, output_tokens=1) -- !
3: Usage(input_tokens=8, output_tokens=1) -- How
4: Usage(input_tokens=8, output_tokens=1) -- can
5: Usage(input_tokens=8, output_tokens=1) -- I
6: Usage(input_tokens=8, output_tokens=1) -- assist
7: Usage(input_tokens=8, output_tokens=1) -- you
8: Usage(input_tokens=8, output_tokens=1) -- today
9: Usage(input_tokens=8, output_tokens=1) -- ?
10: Usage(input_tokens=8, output_tokens=12)
```
To do this correctly, we need to emit a new chunk at the end of the
stream containing the usage metadata.
2. [Handle raw
events](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-responses)
```python
stream = client.messages.create(**params, stream=True)
count = 1
for event in stream:
print(f"{count}: {event}")
count = count + 1
```
```
1: RawMessageStartEvent(message=Message(id='msg_01Vdyov2kADZTXqSKkfNJXcS', content=[], model='claude-3-haiku-20240307', role='assistant', stop_reason=None, stop_sequence=None, type='message', usage=Usage(input_tokens=8, output_tokens=1)), type='message_start')
2: RawContentBlockStartEvent(content_block=TextBlock(text='', type='text'), index=0, type='content_block_start')
3: RawContentBlockDeltaEvent(delta=TextDelta(text='Hello', type='text_delta'), index=0, type='content_block_delta')
4: RawContentBlockDeltaEvent(delta=TextDelta(text='!', type='text_delta'), index=0, type='content_block_delta')
5: RawContentBlockDeltaEvent(delta=TextDelta(text=' How', type='text_delta'), index=0, type='content_block_delta')
6: RawContentBlockDeltaEvent(delta=TextDelta(text=' can', type='text_delta'), index=0, type='content_block_delta')
7: RawContentBlockDeltaEvent(delta=TextDelta(text=' I', type='text_delta'), index=0, type='content_block_delta')
8: RawContentBlockDeltaEvent(delta=TextDelta(text=' assist', type='text_delta'), index=0, type='content_block_delta')
9: RawContentBlockDeltaEvent(delta=TextDelta(text=' you', type='text_delta'), index=0, type='content_block_delta')
10: RawContentBlockDeltaEvent(delta=TextDelta(text=' today', type='text_delta'), index=0, type='content_block_delta')
11: RawContentBlockDeltaEvent(delta=TextDelta(text='?', type='text_delta'), index=0, type='content_block_delta')
12: RawContentBlockStopEvent(index=0, type='content_block_stop')
13: RawMessageDeltaEvent(delta=Delta(stop_reason='end_turn', stop_sequence=None), type='message_delta', usage=MessageDeltaUsage(output_tokens=12))
14: RawMessageStopEvent(type='message_stop')
```
Here we implement the second option, in part because it should make
things easier when implementing streaming tool calls in the near future.
This would add two new chunks to the stream-- one at the beginning and
one at the end-- with blank content and containing usage metadata. We
add kwargs to the stream methods and a class attribute allowing for this
behavior to be toggled. I enabled it by default. If we merge this we can
add the same kwargs / attribute to OpenAI.
Usage:
```python
from langchain_anthropic import ChatAnthropic
model = ChatAnthropic(
model="claude-3-haiku-20240307",
temperature=0
)
full = None
for chunk in model.stream("hi"):
full = chunk if full is None else full + chunk
print(chunk)
print(f"\nFull: {full}")
```
```
content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 0, 'total_tokens': 8}
content='Hello' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='!' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' How' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' can' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' I' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' assist' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' you' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' today' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='?' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 0, 'output_tokens': 12, 'total_tokens': 12}
Full: content='Hello! How can I assist you today?' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 12, 'total_tokens': 20}
```
2024-06-07 13:21:46 +00:00
)
if msg is not None :
chunk = ChatGenerationChunk ( message = msg )
if run_manager and isinstance ( msg . content , str ) :
await run_manager . on_llm_new_token ( msg . content , chunk = chunk )
2024-02-26 05:57:26 +00:00
yield chunk
2023-12-20 02:55:19 +00:00
2024-03-28 06:16:26 +00:00
def _format_output ( self , data : Any , * * kwargs : Any ) - > ChatResult :
data_dict = data . model_dump ( )
content = data_dict [ " content " ]
llm_output = {
k : v for k , v in data_dict . items ( ) if k not in ( " content " , " role " , " type " )
}
2024-04-04 20:22:48 +00:00
if len ( content ) == 1 and content [ 0 ] [ " type " ] == " text " :
msg = AIMessage ( content = content [ 0 ] [ " text " ] )
core[minor], ...: add tool calls message (#18947)
core[minor], langchain[patch], openai[minor], anthropic[minor], fireworks[minor], groq[minor], mistralai[minor]
```python
class ToolCall(TypedDict):
name: str
args: Dict[str, Any]
id: Optional[str]
class InvalidToolCall(TypedDict):
name: Optional[str]
args: Optional[str]
id: Optional[str]
error: Optional[str]
class ToolCallChunk(TypedDict):
name: Optional[str]
args: Optional[str]
id: Optional[str]
index: Optional[int]
class AIMessage(BaseMessage):
...
tool_calls: List[ToolCall] = []
invalid_tool_calls: List[InvalidToolCall] = []
...
class AIMessageChunk(AIMessage, BaseMessageChunk):
...
tool_call_chunks: Optional[List[ToolCallChunk]] = None
...
```
Important considerations:
- Parsing logic occurs within different providers;
- ~Changing output type is a breaking change for anyone doing explicit
type checking;~
- ~Langsmith rendering will need to be updated:
https://github.com/langchain-ai/langchainplus/pull/3561~
- ~Langserve will need to be updated~
- Adding chunks:
- ~AIMessage + ToolCallsMessage = ToolCallsMessage if either has
non-null .tool_calls.~
- Tool call chunks are appended, merging when having equal values of
`index`.
- additional_kwargs accumulate the normal way.
- During streaming:
- ~Messages can change types (e.g., from AIMessageChunk to
AIToolCallsMessageChunk)~
- Output parsers parse additional_kwargs (during .invoke they read off
tool calls).
Packages outside of `partners/`:
- https://github.com/langchain-ai/langchain-cohere/pull/7
- https://github.com/langchain-ai/langchain-google/pull/123/files
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-04-09 23:41:42 +00:00
elif any ( block [ " type " ] == " tool_use " for block in content ) :
tool_calls = extract_tool_calls ( content )
msg = AIMessage (
content = content ,
tool_calls = tool_calls ,
)
2024-04-04 20:22:48 +00:00
else :
msg = AIMessage ( content = content )
2024-05-23 18:21:58 +00:00
# Collect token usage
msg . usage_metadata = {
" input_tokens " : data . usage . input_tokens ,
" output_tokens " : data . usage . output_tokens ,
" total_tokens " : data . usage . input_tokens + data . usage . output_tokens ,
}
2024-03-05 16:30:16 +00:00
return ChatResult (
2024-04-04 20:22:48 +00:00
generations = [ ChatGeneration ( message = msg ) ] ,
2024-03-28 06:16:26 +00:00
llm_output = llm_output ,
2024-03-05 16:30:16 +00:00
)
2023-12-20 02:55:19 +00:00
def _generate (
self ,
messages : List [ BaseMessage ] ,
stop : Optional [ List [ str ] ] = None ,
run_manager : Optional [ CallbackManagerForLLMRun ] = None ,
* * kwargs : Any ,
) - > ChatResult :
2024-04-04 20:22:48 +00:00
if self . streaming :
anthropic[minor]: Adds streaming tool call support for Anthropic (#22687)
Preserves string content chunks for non tool call requests for
convenience.
One thing - Anthropic events look like this:
```
RawContentBlockStartEvent(content_block=TextBlock(text='', type='text'), index=0, type='content_block_start')
RawContentBlockDeltaEvent(delta=TextDelta(text='<thinking>\nThe', type='text_delta'), index=0, type='content_block_delta')
RawContentBlockDeltaEvent(delta=TextDelta(text=' provide', type='text_delta'), index=0, type='content_block_delta')
...
RawContentBlockStartEvent(content_block=ToolUseBlock(id='toolu_01GJ6x2ddcMG3psDNNe4eDqb', input={}, name='get_weather', type='tool_use'), index=1, type='content_block_start')
RawContentBlockDeltaEvent(delta=InputJsonDelta(partial_json='', type='input_json_delta'), index=1, type='content_block_delta')
```
Note that `delta` has a `type` field. With this implementation, I'm
dropping it because `merge_list` behavior will concatenate strings.
We currently have `index` as a special field when merging lists, would
it be worth adding `type` too?
If so, what do we set as a context block chunk? `text` vs.
`text_delta`/`tool_use` vs `input_json_delta`?
CC @ccurme @efriis @baskaryan
2024-06-14 16:14:43 +00:00
stream_iter = self . _stream (
messages , stop = stop , run_manager = run_manager , * * kwargs
)
return generate_from_stream ( stream_iter )
2024-07-02 21:43:47 +00:00
payload = self . _get_request_payload ( messages , stop = stop , * * kwargs )
data = self . _client . messages . create ( * * payload )
anthropic[patch]: add kwargs to format_output base (#18715)
_generate() and _agenerate() both accept **kwargs, then pass them on to
_format_output; but _format_output doesn't accept **kwargs. Attempting
to pass, e.g.,
timeout=50
to _generate (or invoke()) results in a TypeError.
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-03-08 21:47:21 +00:00
return self . _format_output ( data , * * kwargs )
2023-12-20 02:55:19 +00:00
async def _agenerate (
self ,
messages : List [ BaseMessage ] ,
stop : Optional [ List [ str ] ] = None ,
run_manager : Optional [ AsyncCallbackManagerForLLMRun ] = None ,
* * kwargs : Any ,
) - > ChatResult :
2024-04-04 20:22:48 +00:00
if self . streaming :
anthropic[minor]: Adds streaming tool call support for Anthropic (#22687)
Preserves string content chunks for non tool call requests for
convenience.
One thing - Anthropic events look like this:
```
RawContentBlockStartEvent(content_block=TextBlock(text='', type='text'), index=0, type='content_block_start')
RawContentBlockDeltaEvent(delta=TextDelta(text='<thinking>\nThe', type='text_delta'), index=0, type='content_block_delta')
RawContentBlockDeltaEvent(delta=TextDelta(text=' provide', type='text_delta'), index=0, type='content_block_delta')
...
RawContentBlockStartEvent(content_block=ToolUseBlock(id='toolu_01GJ6x2ddcMG3psDNNe4eDqb', input={}, name='get_weather', type='tool_use'), index=1, type='content_block_start')
RawContentBlockDeltaEvent(delta=InputJsonDelta(partial_json='', type='input_json_delta'), index=1, type='content_block_delta')
```
Note that `delta` has a `type` field. With this implementation, I'm
dropping it because `merge_list` behavior will concatenate strings.
We currently have `index` as a special field when merging lists, would
it be worth adding `type` too?
If so, what do we set as a context block chunk? `text` vs.
`text_delta`/`tool_use` vs `input_json_delta`?
CC @ccurme @efriis @baskaryan
2024-06-14 16:14:43 +00:00
stream_iter = self . _astream (
messages , stop = stop , run_manager = run_manager , * * kwargs
)
return await agenerate_from_stream ( stream_iter )
2024-07-02 21:43:47 +00:00
payload = self . _get_request_payload ( messages , stop = stop , * * kwargs )
data = await self . _async_client . messages . create ( * * payload )
anthropic[patch]: add kwargs to format_output base (#18715)
_generate() and _agenerate() both accept **kwargs, then pass them on to
_format_output; but _format_output doesn't accept **kwargs. Attempting
to pass, e.g.,
timeout=50
to _generate (or invoke()) results in a TypeError.
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-03-08 21:47:21 +00:00
return self . _format_output ( data , * * kwargs )
2024-02-26 05:57:26 +00:00
2024-04-04 20:22:48 +00:00
def bind_tools (
self ,
2024-07-31 18:27:24 +00:00
tools : Sequence [ Union [ Dict [ str , Any ] , Type , Callable , BaseTool ] ] ,
2024-05-16 17:56:29 +00:00
* ,
tool_choice : Optional [
Union [ Dict [ str , str ] , Literal [ " any " , " auto " ] , str ]
] = None ,
2024-04-04 20:22:48 +00:00
* * kwargs : Any ,
) - > Runnable [ LanguageModelInput , BaseMessage ] :
""" Bind tool-like objects to this chat model.
Args :
tools : A list of tool definitions to bind to this chat model .
2024-07-31 18:27:24 +00:00
Supports Anthropic format tool schemas and any tool definition handled
by : meth : ` langchain_core . utils . function_calling . convert_to_openai_tool ` .
2024-05-16 17:56:29 +00:00
tool_choice : Which tool to require the model to call .
Options are :
2024-07-31 18:27:24 +00:00
- name of the tool ( str ) : calls corresponding tool ;
- ` ` " auto " ` ` or None : automatically selects a tool ( including no tool ) ;
- ` ` " any " ` ` : force at least one tool to be called ;
- or a dict of the form :
` ` { " type " : " tool " , " name " : " tool_name " } ` ` ,
or ` ` { " type: " any " }``,
or ` ` { " type: " auto " }``;
kwargs : Any additional parameters are passed directly to
` ` self . bind ( * * kwargs ) ` ` .
2024-04-05 21:50:40 +00:00
Example :
. . code - block : : python
from langchain_anthropic import ChatAnthropic
from langchain_core . pydantic_v1 import BaseModel , Field
class GetWeather ( BaseModel ) :
''' Get the current weather in a given location '''
location : str = Field ( . . . , description = " The city and state, e.g. San Francisco, CA " )
2024-05-16 17:56:29 +00:00
class GetPrice ( BaseModel ) :
''' Get the price of a specific product. '''
product : str = Field ( . . . , description = " The product to look up. " )
2024-04-05 21:50:40 +00:00
llm = ChatAnthropic ( model = " claude-3-opus-20240229 " , temperature = 0 )
2024-05-16 17:56:29 +00:00
llm_with_tools = llm . bind_tools ( [ GetWeather , GetPrice ] )
2024-04-05 21:50:40 +00:00
llm_with_tools . invoke ( " what is the weather like in San Francisco " , )
# -> AIMessage(
# content=[
# {'text': '<thinking>\nBased on the user\'s question, the relevant function to call is GetWeather, which requires the "location" parameter.\n\nThe user has directly specified the location as "San Francisco". Since San Francisco is a well known city, I can reasonably infer they mean San Francisco, CA without needing the state specified.\n\nAll the required parameters are provided, so I can proceed with the API call.\n</thinking>', 'type': 'text'},
# {'text': None, 'type': 'tool_use', 'id': 'toolu_01SCgExKzQ7eqSkMHfygvYuu', 'name': 'GetWeather', 'input': {'location': 'San Francisco, CA'}}
# ],
# response_metadata={'id': 'msg_01GM3zQtoFv8jGQMW7abLnhi', 'model': 'claude-3-opus-20240229', 'stop_reason': 'tool_use', 'stop_sequence': None, 'usage': {'input_tokens': 487, 'output_tokens': 145}},
# id='run-87b1331e-9251-4a68-acef-f0a018b639cc-0'
# )
2024-05-16 17:56:29 +00:00
Example — force tool call with tool_choice ' any ' :
. . code - block : : python
from langchain_anthropic import ChatAnthropic
from langchain_core . pydantic_v1 import BaseModel , Field
class GetWeather ( BaseModel ) :
''' Get the current weather in a given location '''
location : str = Field ( . . . , description = " The city and state, e.g. San Francisco, CA " )
class GetPrice ( BaseModel ) :
''' Get the price of a specific product. '''
product : str = Field ( . . . , description = " The product to look up. " )
llm = ChatAnthropic ( model = " claude-3-opus-20240229 " , temperature = 0 )
llm_with_tools = llm . bind_tools ( [ GetWeather , GetPrice ] , tool_choice = " any " )
llm_with_tools . invoke ( " what is the weather like in San Francisco " , )
Example — force specific tool call with tool_choice ' <name_of_tool> ' :
. . code - block : : python
from langchain_anthropic import ChatAnthropic
from langchain_core . pydantic_v1 import BaseModel , Field
class GetWeather ( BaseModel ) :
''' Get the current weather in a given location '''
location : str = Field ( . . . , description = " The city and state, e.g. San Francisco, CA " )
class GetPrice ( BaseModel ) :
''' Get the price of a specific product. '''
product : str = Field ( . . . , description = " The product to look up. " )
llm = ChatAnthropic ( model = " claude-3-opus-20240229 " , temperature = 0 )
llm_with_tools = llm . bind_tools ( [ GetWeather , GetPrice ] , tool_choice = " GetWeather " )
llm_with_tools . invoke ( " what is the weather like in San Francisco " , )
2024-04-05 21:50:40 +00:00
""" # noqa: E501
2024-04-04 20:22:48 +00:00
formatted_tools = [ convert_to_anthropic_tool ( tool ) for tool in tools ]
2024-05-16 17:56:29 +00:00
if not tool_choice :
pass
elif isinstance ( tool_choice , dict ) :
kwargs [ " tool_choice " ] = tool_choice
elif isinstance ( tool_choice , str ) and tool_choice in ( " any " , " auto " ) :
kwargs [ " tool_choice " ] = { " type " : tool_choice }
elif isinstance ( tool_choice , str ) :
kwargs [ " tool_choice " ] = { " type " : " tool " , " name " : tool_choice }
else :
raise ValueError (
f " Unrecognized ' tool_choice ' type { tool_choice =} . Expected dict, "
f " str, or None. "
)
2024-04-04 21:23:53 +00:00
return self . bind ( tools = formatted_tools , * * kwargs )
2024-04-04 20:22:48 +00:00
def with_structured_output (
self ,
schema : Union [ Dict , Type [ BaseModel ] ] ,
* ,
include_raw : bool = False ,
* * kwargs : Any ,
) - > Runnable [ LanguageModelInput , Union [ Dict , BaseModel ] ] :
2024-04-05 21:50:40 +00:00
""" Model wrapper that returns outputs formatted to match the given schema.
Args :
2024-07-31 18:27:24 +00:00
schema :
The output schema . Can be passed in as :
- an Anthropic tool schema ,
- an OpenAI function / tool schema ,
- a JSON Schema ,
- a TypedDict class ( support added in 0.1 .22 ) ,
- or a Pydantic class .
If ` ` schema ` ` is a Pydantic class then the model output will be a
Pydantic instance of that class , and the model - generated fields will be
validated by the Pydantic class . Otherwise the model output will be a
dict and will not be validated . See : meth : ` langchain_core . utils . function_calling . convert_to_openai_tool `
for more on how to properly specify types and descriptions of
schema fields when specifying a Pydantic or TypedDict class .
. . versionchanged : : 0.1 .22
Added support for TypedDict class .
include_raw :
If False then only the parsed structured output is returned . If
2024-04-05 21:50:40 +00:00
an error occurs during model output parsing it will be raised . If True
then both the raw model response ( a BaseMessage ) and the parsed model
response will be returned . If an error occurs during output parsing it
will be caught and returned as well . The final output is always a dict
with keys " raw " , " parsed " , and " parsing_error " .
Returns :
2024-07-31 18:27:24 +00:00
A Runnable that takes same inputs as a : class : ` langchain_core . language_models . chat . BaseChatModel ` .
2024-04-05 21:50:40 +00:00
2024-07-31 18:27:24 +00:00
If ` ` include_raw ` ` is False and ` ` schema ` ` is a Pydantic class , Runnable outputs
an instance of ` ` schema ` ` ( i . e . , a Pydantic object ) .
2024-04-05 21:50:40 +00:00
2024-07-31 18:27:24 +00:00
Otherwise , if ` ` include_raw ` ` is False then Runnable outputs a dict .
If ` ` include_raw ` ` is True , then Runnable outputs a dict with keys :
- ` ` " raw " ` ` : BaseMessage
- ` ` " parsed " ` ` : None if there was a parsing error , otherwise the type depends on the ` ` schema ` ` as described above .
- ` ` " parsing_error " ` ` : Optional [ BaseException ]
2024-04-05 21:50:40 +00:00
Example : Pydantic schema ( include_raw = False ) :
. . code - block : : python
from langchain_anthropic import ChatAnthropic
from langchain_core . pydantic_v1 import BaseModel
class AnswerWithJustification ( BaseModel ) :
''' An answer to the user question along with justification for the answer. '''
answer : str
justification : str
llm = ChatAnthropic ( model = " claude-3-opus-20240229 " , temperature = 0 )
structured_llm = llm . with_structured_output ( AnswerWithJustification )
structured_llm . invoke ( " What weighs more a pound of bricks or a pound of feathers " )
# -> AnswerWithJustification(
# answer='They weigh the same',
# justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
# )
Example : Pydantic schema ( include_raw = True ) :
. . code - block : : python
from langchain_anthropic import ChatAnthropic
from langchain_core . pydantic_v1 import BaseModel
class AnswerWithJustification ( BaseModel ) :
''' An answer to the user question along with justification for the answer. '''
answer : str
justification : str
llm = ChatAnthropic ( model = " claude-3-opus-20240229 " , temperature = 0 )
structured_llm = llm . with_structured_output ( AnswerWithJustification , include_raw = True )
structured_llm . invoke ( " What weighs more a pound of bricks or a pound of feathers " )
# -> {
# 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}),
# 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'),
# 'parsing_error': None
# }
Example : Dict schema ( include_raw = False ) :
. . code - block : : python
from langchain_anthropic import ChatAnthropic
schema = {
" name " : " AnswerWithJustification " ,
" description " : " An answer to the user question along with justification for the answer. " ,
" input_schema " : {
" type " : " object " ,
" properties " : {
" answer " : { " type " : " string " } ,
" justification " : { " type " : " string " } ,
} ,
" required " : [ " answer " , " justification " ]
}
}
llm = ChatAnthropic ( model = " claude-3-opus-20240229 " , temperature = 0 )
structured_llm = llm . with_structured_output ( schema )
structured_llm . invoke ( " What weighs more a pound of bricks or a pound of feathers " )
# -> {
# 'answer': 'They weigh the same',
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
# }
""" # noqa: E501
2024-06-28 23:39:53 +00:00
tool_name = convert_to_anthropic_tool ( schema ) [ " name " ]
llm = self . bind_tools ( [ schema ] , tool_choice = tool_name )
core,groq,openai,mistralai,robocorp,fireworks,anthropic[patch]: Update BaseModel subclass and instance checks to handle both v1 and proper namespaces (#24417)
After this PR chat models will correctly handle pydantic 2 with
bind_tools and with_structured_output.
```python
import pydantic
print(pydantic.__version__)
```
2.8.2
```python
from langchain_openai import ChatOpenAI
from pydantic import BaseModel, Field
class Add(BaseModel):
x: int
y: int
model = ChatOpenAI().bind_tools([Add])
print(model.invoke('2 + 5').tool_calls)
model = ChatOpenAI().with_structured_output(Add)
print(type(model.invoke('2 + 5')))
```
```
[{'name': 'Add', 'args': {'x': 2, 'y': 5}, 'id': 'call_PNUFa4pdfNOYXxIMHc6ps2Do', 'type': 'tool_call'}]
<class '__main__.Add'>
```
```python
from langchain_openai import ChatOpenAI
from pydantic.v1 import BaseModel, Field
class Add(BaseModel):
x: int
y: int
model = ChatOpenAI().bind_tools([Add])
print(model.invoke('2 + 5').tool_calls)
model = ChatOpenAI().with_structured_output(Add)
print(type(model.invoke('2 + 5')))
```
```python
[{'name': 'Add', 'args': {'x': 2, 'y': 5}, 'id': 'call_hhiHYP441cp14TtrHKx3Upg0', 'type': 'tool_call'}]
<class '__main__.Add'>
```
Addresses issues: https://github.com/langchain-ai/langchain/issues/22782
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-22 20:07:39 +00:00
if isinstance ( schema , type ) and is_basemodel_subclass ( schema ) :
2024-07-02 20:15:26 +00:00
output_parser : OutputParserLike = PydanticToolsParser (
tools = [ schema ] , first_tool_only = True
2024-04-04 20:22:48 +00:00
)
else :
2024-07-02 20:15:26 +00:00
output_parser = JsonOutputKeyToolsParser (
key_name = tool_name , first_tool_only = True
)
2024-04-04 20:22:48 +00:00
if include_raw :
parser_assign = RunnablePassthrough . assign (
parsed = itemgetter ( " raw " ) | output_parser , parsing_error = lambda _ : None
)
parser_none = RunnablePassthrough . assign ( parsed = lambda _ : None )
parser_with_fallback = parser_assign . with_fallbacks (
[ parser_none ] , exception_key = " parsing_error "
)
return RunnableMap ( raw = llm ) | parser_with_fallback
else :
return llm | output_parser
class AnthropicTool ( TypedDict ) :
2024-06-19 02:26:45 +00:00
""" Anthropic tool definition. """
2024-04-04 20:22:48 +00:00
name : str
description : str
input_schema : Dict [ str , Any ]
def convert_to_anthropic_tool (
2024-07-31 18:27:24 +00:00
tool : Union [ Dict [ str , Any ] , Type , Callable , BaseTool ] ,
2024-04-04 20:22:48 +00:00
) - > AnthropicTool :
2024-06-19 02:26:45 +00:00
""" Convert a tool-like object to an Anthropic tool definition. """
2024-04-04 20:22:48 +00:00
# already in Anthropic tool format
if isinstance ( tool , dict ) and all (
k in tool for k in ( " name " , " description " , " input_schema " )
) :
return AnthropicTool ( tool ) # type: ignore
else :
formatted = convert_to_openai_tool ( tool ) [ " function " ]
return AnthropicTool (
name = formatted [ " name " ] ,
description = formatted [ " description " ] ,
input_schema = formatted [ " parameters " ] ,
)
2024-02-26 05:57:26 +00:00
2024-04-04 21:23:53 +00:00
def _tools_in_params ( params : dict ) - > bool :
return " tools " in params or (
" extra_body " in params and params [ " extra_body " ] . get ( " tools " )
)
2024-04-16 22:27:29 +00:00
class _AnthropicToolUse ( TypedDict ) :
type : Literal [ " tool_use " ]
name : str
input : dict
id : str
def _lc_tool_calls_to_anthropic_tool_use_blocks (
tool_calls : List [ ToolCall ] ,
) - > List [ _AnthropicToolUse ] :
blocks = [ ]
for tool_call in tool_calls :
blocks . append (
_AnthropicToolUse (
type = " tool_use " ,
name = tool_call [ " name " ] ,
input = tool_call [ " args " ] ,
id = cast ( str , tool_call [ " id " ] ) ,
)
)
return blocks
anthropic: refactor streaming to use events api; add streaming usage metadata (#22628)
- Refactor streaming to use raw events;
- Add `stream_usage` class attribute and kwarg to stream methods that,
if True, will include separate chunks in the stream containing usage
metadata.
There are two ways to implement streaming with anthropic's python sdk.
They have slight differences in how they surface usage metadata.
1. [Use helper
functions](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-helpers).
This is what we are doing now.
```python
count = 1
with client.messages.stream(**params) as stream:
for text in stream.text_stream:
snapshot = stream.current_message_snapshot
print(f"{count}: {snapshot.usage} -- {text}")
count = count + 1
final_snapshot = stream.get_final_message()
print(f"{count}: {final_snapshot.usage}")
```
```
1: Usage(input_tokens=8, output_tokens=1) -- Hello
2: Usage(input_tokens=8, output_tokens=1) -- !
3: Usage(input_tokens=8, output_tokens=1) -- How
4: Usage(input_tokens=8, output_tokens=1) -- can
5: Usage(input_tokens=8, output_tokens=1) -- I
6: Usage(input_tokens=8, output_tokens=1) -- assist
7: Usage(input_tokens=8, output_tokens=1) -- you
8: Usage(input_tokens=8, output_tokens=1) -- today
9: Usage(input_tokens=8, output_tokens=1) -- ?
10: Usage(input_tokens=8, output_tokens=12)
```
To do this correctly, we need to emit a new chunk at the end of the
stream containing the usage metadata.
2. [Handle raw
events](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-responses)
```python
stream = client.messages.create(**params, stream=True)
count = 1
for event in stream:
print(f"{count}: {event}")
count = count + 1
```
```
1: RawMessageStartEvent(message=Message(id='msg_01Vdyov2kADZTXqSKkfNJXcS', content=[], model='claude-3-haiku-20240307', role='assistant', stop_reason=None, stop_sequence=None, type='message', usage=Usage(input_tokens=8, output_tokens=1)), type='message_start')
2: RawContentBlockStartEvent(content_block=TextBlock(text='', type='text'), index=0, type='content_block_start')
3: RawContentBlockDeltaEvent(delta=TextDelta(text='Hello', type='text_delta'), index=0, type='content_block_delta')
4: RawContentBlockDeltaEvent(delta=TextDelta(text='!', type='text_delta'), index=0, type='content_block_delta')
5: RawContentBlockDeltaEvent(delta=TextDelta(text=' How', type='text_delta'), index=0, type='content_block_delta')
6: RawContentBlockDeltaEvent(delta=TextDelta(text=' can', type='text_delta'), index=0, type='content_block_delta')
7: RawContentBlockDeltaEvent(delta=TextDelta(text=' I', type='text_delta'), index=0, type='content_block_delta')
8: RawContentBlockDeltaEvent(delta=TextDelta(text=' assist', type='text_delta'), index=0, type='content_block_delta')
9: RawContentBlockDeltaEvent(delta=TextDelta(text=' you', type='text_delta'), index=0, type='content_block_delta')
10: RawContentBlockDeltaEvent(delta=TextDelta(text=' today', type='text_delta'), index=0, type='content_block_delta')
11: RawContentBlockDeltaEvent(delta=TextDelta(text='?', type='text_delta'), index=0, type='content_block_delta')
12: RawContentBlockStopEvent(index=0, type='content_block_stop')
13: RawMessageDeltaEvent(delta=Delta(stop_reason='end_turn', stop_sequence=None), type='message_delta', usage=MessageDeltaUsage(output_tokens=12))
14: RawMessageStopEvent(type='message_stop')
```
Here we implement the second option, in part because it should make
things easier when implementing streaming tool calls in the near future.
This would add two new chunks to the stream-- one at the beginning and
one at the end-- with blank content and containing usage metadata. We
add kwargs to the stream methods and a class attribute allowing for this
behavior to be toggled. I enabled it by default. If we merge this we can
add the same kwargs / attribute to OpenAI.
Usage:
```python
from langchain_anthropic import ChatAnthropic
model = ChatAnthropic(
model="claude-3-haiku-20240307",
temperature=0
)
full = None
for chunk in model.stream("hi"):
full = chunk if full is None else full + chunk
print(chunk)
print(f"\nFull: {full}")
```
```
content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 0, 'total_tokens': 8}
content='Hello' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='!' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' How' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' can' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' I' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' assist' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' you' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' today' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='?' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 0, 'output_tokens': 12, 'total_tokens': 12}
Full: content='Hello! How can I assist you today?' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 12, 'total_tokens': 20}
```
2024-06-07 13:21:46 +00:00
def _make_message_chunk_from_anthropic_event (
event : anthropic . types . RawMessageStreamEvent ,
* ,
stream_usage : bool = True ,
anthropic[minor]: Adds streaming tool call support for Anthropic (#22687)
Preserves string content chunks for non tool call requests for
convenience.
One thing - Anthropic events look like this:
```
RawContentBlockStartEvent(content_block=TextBlock(text='', type='text'), index=0, type='content_block_start')
RawContentBlockDeltaEvent(delta=TextDelta(text='<thinking>\nThe', type='text_delta'), index=0, type='content_block_delta')
RawContentBlockDeltaEvent(delta=TextDelta(text=' provide', type='text_delta'), index=0, type='content_block_delta')
...
RawContentBlockStartEvent(content_block=ToolUseBlock(id='toolu_01GJ6x2ddcMG3psDNNe4eDqb', input={}, name='get_weather', type='tool_use'), index=1, type='content_block_start')
RawContentBlockDeltaEvent(delta=InputJsonDelta(partial_json='', type='input_json_delta'), index=1, type='content_block_delta')
```
Note that `delta` has a `type` field. With this implementation, I'm
dropping it because `merge_list` behavior will concatenate strings.
We currently have `index` as a special field when merging lists, would
it be worth adding `type` too?
If so, what do we set as a context block chunk? `text` vs.
`text_delta`/`tool_use` vs `input_json_delta`?
CC @ccurme @efriis @baskaryan
2024-06-14 16:14:43 +00:00
coerce_content_to_string : bool ,
anthropic: refactor streaming to use events api; add streaming usage metadata (#22628)
- Refactor streaming to use raw events;
- Add `stream_usage` class attribute and kwarg to stream methods that,
if True, will include separate chunks in the stream containing usage
metadata.
There are two ways to implement streaming with anthropic's python sdk.
They have slight differences in how they surface usage metadata.
1. [Use helper
functions](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-helpers).
This is what we are doing now.
```python
count = 1
with client.messages.stream(**params) as stream:
for text in stream.text_stream:
snapshot = stream.current_message_snapshot
print(f"{count}: {snapshot.usage} -- {text}")
count = count + 1
final_snapshot = stream.get_final_message()
print(f"{count}: {final_snapshot.usage}")
```
```
1: Usage(input_tokens=8, output_tokens=1) -- Hello
2: Usage(input_tokens=8, output_tokens=1) -- !
3: Usage(input_tokens=8, output_tokens=1) -- How
4: Usage(input_tokens=8, output_tokens=1) -- can
5: Usage(input_tokens=8, output_tokens=1) -- I
6: Usage(input_tokens=8, output_tokens=1) -- assist
7: Usage(input_tokens=8, output_tokens=1) -- you
8: Usage(input_tokens=8, output_tokens=1) -- today
9: Usage(input_tokens=8, output_tokens=1) -- ?
10: Usage(input_tokens=8, output_tokens=12)
```
To do this correctly, we need to emit a new chunk at the end of the
stream containing the usage metadata.
2. [Handle raw
events](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-responses)
```python
stream = client.messages.create(**params, stream=True)
count = 1
for event in stream:
print(f"{count}: {event}")
count = count + 1
```
```
1: RawMessageStartEvent(message=Message(id='msg_01Vdyov2kADZTXqSKkfNJXcS', content=[], model='claude-3-haiku-20240307', role='assistant', stop_reason=None, stop_sequence=None, type='message', usage=Usage(input_tokens=8, output_tokens=1)), type='message_start')
2: RawContentBlockStartEvent(content_block=TextBlock(text='', type='text'), index=0, type='content_block_start')
3: RawContentBlockDeltaEvent(delta=TextDelta(text='Hello', type='text_delta'), index=0, type='content_block_delta')
4: RawContentBlockDeltaEvent(delta=TextDelta(text='!', type='text_delta'), index=0, type='content_block_delta')
5: RawContentBlockDeltaEvent(delta=TextDelta(text=' How', type='text_delta'), index=0, type='content_block_delta')
6: RawContentBlockDeltaEvent(delta=TextDelta(text=' can', type='text_delta'), index=0, type='content_block_delta')
7: RawContentBlockDeltaEvent(delta=TextDelta(text=' I', type='text_delta'), index=0, type='content_block_delta')
8: RawContentBlockDeltaEvent(delta=TextDelta(text=' assist', type='text_delta'), index=0, type='content_block_delta')
9: RawContentBlockDeltaEvent(delta=TextDelta(text=' you', type='text_delta'), index=0, type='content_block_delta')
10: RawContentBlockDeltaEvent(delta=TextDelta(text=' today', type='text_delta'), index=0, type='content_block_delta')
11: RawContentBlockDeltaEvent(delta=TextDelta(text='?', type='text_delta'), index=0, type='content_block_delta')
12: RawContentBlockStopEvent(index=0, type='content_block_stop')
13: RawMessageDeltaEvent(delta=Delta(stop_reason='end_turn', stop_sequence=None), type='message_delta', usage=MessageDeltaUsage(output_tokens=12))
14: RawMessageStopEvent(type='message_stop')
```
Here we implement the second option, in part because it should make
things easier when implementing streaming tool calls in the near future.
This would add two new chunks to the stream-- one at the beginning and
one at the end-- with blank content and containing usage metadata. We
add kwargs to the stream methods and a class attribute allowing for this
behavior to be toggled. I enabled it by default. If we merge this we can
add the same kwargs / attribute to OpenAI.
Usage:
```python
from langchain_anthropic import ChatAnthropic
model = ChatAnthropic(
model="claude-3-haiku-20240307",
temperature=0
)
full = None
for chunk in model.stream("hi"):
full = chunk if full is None else full + chunk
print(chunk)
print(f"\nFull: {full}")
```
```
content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 0, 'total_tokens': 8}
content='Hello' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='!' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' How' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' can' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' I' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' assist' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' you' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' today' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='?' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 0, 'output_tokens': 12, 'total_tokens': 12}
Full: content='Hello! How can I assist you today?' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 12, 'total_tokens': 20}
```
2024-06-07 13:21:46 +00:00
) - > Optional [ AIMessageChunk ] :
""" Convert Anthropic event to AIMessageChunk.
Note that not all events will result in a message chunk . In these cases
we return None .
"""
message_chunk : Optional [ AIMessageChunk ] = None
anthropic[minor]: Adds streaming tool call support for Anthropic (#22687)
Preserves string content chunks for non tool call requests for
convenience.
One thing - Anthropic events look like this:
```
RawContentBlockStartEvent(content_block=TextBlock(text='', type='text'), index=0, type='content_block_start')
RawContentBlockDeltaEvent(delta=TextDelta(text='<thinking>\nThe', type='text_delta'), index=0, type='content_block_delta')
RawContentBlockDeltaEvent(delta=TextDelta(text=' provide', type='text_delta'), index=0, type='content_block_delta')
...
RawContentBlockStartEvent(content_block=ToolUseBlock(id='toolu_01GJ6x2ddcMG3psDNNe4eDqb', input={}, name='get_weather', type='tool_use'), index=1, type='content_block_start')
RawContentBlockDeltaEvent(delta=InputJsonDelta(partial_json='', type='input_json_delta'), index=1, type='content_block_delta')
```
Note that `delta` has a `type` field. With this implementation, I'm
dropping it because `merge_list` behavior will concatenate strings.
We currently have `index` as a special field when merging lists, would
it be worth adding `type` too?
If so, what do we set as a context block chunk? `text` vs.
`text_delta`/`tool_use` vs `input_json_delta`?
CC @ccurme @efriis @baskaryan
2024-06-14 16:14:43 +00:00
# See https://github.com/anthropics/anthropic-sdk-python/blob/main/src/anthropic/lib/streaming/_messages.py # noqa: E501
anthropic: refactor streaming to use events api; add streaming usage metadata (#22628)
- Refactor streaming to use raw events;
- Add `stream_usage` class attribute and kwarg to stream methods that,
if True, will include separate chunks in the stream containing usage
metadata.
There are two ways to implement streaming with anthropic's python sdk.
They have slight differences in how they surface usage metadata.
1. [Use helper
functions](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-helpers).
This is what we are doing now.
```python
count = 1
with client.messages.stream(**params) as stream:
for text in stream.text_stream:
snapshot = stream.current_message_snapshot
print(f"{count}: {snapshot.usage} -- {text}")
count = count + 1
final_snapshot = stream.get_final_message()
print(f"{count}: {final_snapshot.usage}")
```
```
1: Usage(input_tokens=8, output_tokens=1) -- Hello
2: Usage(input_tokens=8, output_tokens=1) -- !
3: Usage(input_tokens=8, output_tokens=1) -- How
4: Usage(input_tokens=8, output_tokens=1) -- can
5: Usage(input_tokens=8, output_tokens=1) -- I
6: Usage(input_tokens=8, output_tokens=1) -- assist
7: Usage(input_tokens=8, output_tokens=1) -- you
8: Usage(input_tokens=8, output_tokens=1) -- today
9: Usage(input_tokens=8, output_tokens=1) -- ?
10: Usage(input_tokens=8, output_tokens=12)
```
To do this correctly, we need to emit a new chunk at the end of the
stream containing the usage metadata.
2. [Handle raw
events](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-responses)
```python
stream = client.messages.create(**params, stream=True)
count = 1
for event in stream:
print(f"{count}: {event}")
count = count + 1
```
```
1: RawMessageStartEvent(message=Message(id='msg_01Vdyov2kADZTXqSKkfNJXcS', content=[], model='claude-3-haiku-20240307', role='assistant', stop_reason=None, stop_sequence=None, type='message', usage=Usage(input_tokens=8, output_tokens=1)), type='message_start')
2: RawContentBlockStartEvent(content_block=TextBlock(text='', type='text'), index=0, type='content_block_start')
3: RawContentBlockDeltaEvent(delta=TextDelta(text='Hello', type='text_delta'), index=0, type='content_block_delta')
4: RawContentBlockDeltaEvent(delta=TextDelta(text='!', type='text_delta'), index=0, type='content_block_delta')
5: RawContentBlockDeltaEvent(delta=TextDelta(text=' How', type='text_delta'), index=0, type='content_block_delta')
6: RawContentBlockDeltaEvent(delta=TextDelta(text=' can', type='text_delta'), index=0, type='content_block_delta')
7: RawContentBlockDeltaEvent(delta=TextDelta(text=' I', type='text_delta'), index=0, type='content_block_delta')
8: RawContentBlockDeltaEvent(delta=TextDelta(text=' assist', type='text_delta'), index=0, type='content_block_delta')
9: RawContentBlockDeltaEvent(delta=TextDelta(text=' you', type='text_delta'), index=0, type='content_block_delta')
10: RawContentBlockDeltaEvent(delta=TextDelta(text=' today', type='text_delta'), index=0, type='content_block_delta')
11: RawContentBlockDeltaEvent(delta=TextDelta(text='?', type='text_delta'), index=0, type='content_block_delta')
12: RawContentBlockStopEvent(index=0, type='content_block_stop')
13: RawMessageDeltaEvent(delta=Delta(stop_reason='end_turn', stop_sequence=None), type='message_delta', usage=MessageDeltaUsage(output_tokens=12))
14: RawMessageStopEvent(type='message_stop')
```
Here we implement the second option, in part because it should make
things easier when implementing streaming tool calls in the near future.
This would add two new chunks to the stream-- one at the beginning and
one at the end-- with blank content and containing usage metadata. We
add kwargs to the stream methods and a class attribute allowing for this
behavior to be toggled. I enabled it by default. If we merge this we can
add the same kwargs / attribute to OpenAI.
Usage:
```python
from langchain_anthropic import ChatAnthropic
model = ChatAnthropic(
model="claude-3-haiku-20240307",
temperature=0
)
full = None
for chunk in model.stream("hi"):
full = chunk if full is None else full + chunk
print(chunk)
print(f"\nFull: {full}")
```
```
content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 0, 'total_tokens': 8}
content='Hello' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='!' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' How' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' can' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' I' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' assist' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' you' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' today' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='?' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 0, 'output_tokens': 12, 'total_tokens': 12}
Full: content='Hello! How can I assist you today?' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 12, 'total_tokens': 20}
```
2024-06-07 13:21:46 +00:00
if event . type == " message_start " and stream_usage :
input_tokens = event . message . usage . input_tokens
message_chunk = AIMessageChunk (
anthropic[minor]: Adds streaming tool call support for Anthropic (#22687)
Preserves string content chunks for non tool call requests for
convenience.
One thing - Anthropic events look like this:
```
RawContentBlockStartEvent(content_block=TextBlock(text='', type='text'), index=0, type='content_block_start')
RawContentBlockDeltaEvent(delta=TextDelta(text='<thinking>\nThe', type='text_delta'), index=0, type='content_block_delta')
RawContentBlockDeltaEvent(delta=TextDelta(text=' provide', type='text_delta'), index=0, type='content_block_delta')
...
RawContentBlockStartEvent(content_block=ToolUseBlock(id='toolu_01GJ6x2ddcMG3psDNNe4eDqb', input={}, name='get_weather', type='tool_use'), index=1, type='content_block_start')
RawContentBlockDeltaEvent(delta=InputJsonDelta(partial_json='', type='input_json_delta'), index=1, type='content_block_delta')
```
Note that `delta` has a `type` field. With this implementation, I'm
dropping it because `merge_list` behavior will concatenate strings.
We currently have `index` as a special field when merging lists, would
it be worth adding `type` too?
If so, what do we set as a context block chunk? `text` vs.
`text_delta`/`tool_use` vs `input_json_delta`?
CC @ccurme @efriis @baskaryan
2024-06-14 16:14:43 +00:00
content = " " if coerce_content_to_string else [ ] ,
anthropic: refactor streaming to use events api; add streaming usage metadata (#22628)
- Refactor streaming to use raw events;
- Add `stream_usage` class attribute and kwarg to stream methods that,
if True, will include separate chunks in the stream containing usage
metadata.
There are two ways to implement streaming with anthropic's python sdk.
They have slight differences in how they surface usage metadata.
1. [Use helper
functions](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-helpers).
This is what we are doing now.
```python
count = 1
with client.messages.stream(**params) as stream:
for text in stream.text_stream:
snapshot = stream.current_message_snapshot
print(f"{count}: {snapshot.usage} -- {text}")
count = count + 1
final_snapshot = stream.get_final_message()
print(f"{count}: {final_snapshot.usage}")
```
```
1: Usage(input_tokens=8, output_tokens=1) -- Hello
2: Usage(input_tokens=8, output_tokens=1) -- !
3: Usage(input_tokens=8, output_tokens=1) -- How
4: Usage(input_tokens=8, output_tokens=1) -- can
5: Usage(input_tokens=8, output_tokens=1) -- I
6: Usage(input_tokens=8, output_tokens=1) -- assist
7: Usage(input_tokens=8, output_tokens=1) -- you
8: Usage(input_tokens=8, output_tokens=1) -- today
9: Usage(input_tokens=8, output_tokens=1) -- ?
10: Usage(input_tokens=8, output_tokens=12)
```
To do this correctly, we need to emit a new chunk at the end of the
stream containing the usage metadata.
2. [Handle raw
events](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-responses)
```python
stream = client.messages.create(**params, stream=True)
count = 1
for event in stream:
print(f"{count}: {event}")
count = count + 1
```
```
1: RawMessageStartEvent(message=Message(id='msg_01Vdyov2kADZTXqSKkfNJXcS', content=[], model='claude-3-haiku-20240307', role='assistant', stop_reason=None, stop_sequence=None, type='message', usage=Usage(input_tokens=8, output_tokens=1)), type='message_start')
2: RawContentBlockStartEvent(content_block=TextBlock(text='', type='text'), index=0, type='content_block_start')
3: RawContentBlockDeltaEvent(delta=TextDelta(text='Hello', type='text_delta'), index=0, type='content_block_delta')
4: RawContentBlockDeltaEvent(delta=TextDelta(text='!', type='text_delta'), index=0, type='content_block_delta')
5: RawContentBlockDeltaEvent(delta=TextDelta(text=' How', type='text_delta'), index=0, type='content_block_delta')
6: RawContentBlockDeltaEvent(delta=TextDelta(text=' can', type='text_delta'), index=0, type='content_block_delta')
7: RawContentBlockDeltaEvent(delta=TextDelta(text=' I', type='text_delta'), index=0, type='content_block_delta')
8: RawContentBlockDeltaEvent(delta=TextDelta(text=' assist', type='text_delta'), index=0, type='content_block_delta')
9: RawContentBlockDeltaEvent(delta=TextDelta(text=' you', type='text_delta'), index=0, type='content_block_delta')
10: RawContentBlockDeltaEvent(delta=TextDelta(text=' today', type='text_delta'), index=0, type='content_block_delta')
11: RawContentBlockDeltaEvent(delta=TextDelta(text='?', type='text_delta'), index=0, type='content_block_delta')
12: RawContentBlockStopEvent(index=0, type='content_block_stop')
13: RawMessageDeltaEvent(delta=Delta(stop_reason='end_turn', stop_sequence=None), type='message_delta', usage=MessageDeltaUsage(output_tokens=12))
14: RawMessageStopEvent(type='message_stop')
```
Here we implement the second option, in part because it should make
things easier when implementing streaming tool calls in the near future.
This would add two new chunks to the stream-- one at the beginning and
one at the end-- with blank content and containing usage metadata. We
add kwargs to the stream methods and a class attribute allowing for this
behavior to be toggled. I enabled it by default. If we merge this we can
add the same kwargs / attribute to OpenAI.
Usage:
```python
from langchain_anthropic import ChatAnthropic
model = ChatAnthropic(
model="claude-3-haiku-20240307",
temperature=0
)
full = None
for chunk in model.stream("hi"):
full = chunk if full is None else full + chunk
print(chunk)
print(f"\nFull: {full}")
```
```
content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 0, 'total_tokens': 8}
content='Hello' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='!' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' How' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' can' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' I' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' assist' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' you' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' today' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='?' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 0, 'output_tokens': 12, 'total_tokens': 12}
Full: content='Hello! How can I assist you today?' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 12, 'total_tokens': 20}
```
2024-06-07 13:21:46 +00:00
usage_metadata = UsageMetadata (
input_tokens = input_tokens ,
output_tokens = 0 ,
total_tokens = input_tokens ,
) ,
)
anthropic[minor]: Adds streaming tool call support for Anthropic (#22687)
Preserves string content chunks for non tool call requests for
convenience.
One thing - Anthropic events look like this:
```
RawContentBlockStartEvent(content_block=TextBlock(text='', type='text'), index=0, type='content_block_start')
RawContentBlockDeltaEvent(delta=TextDelta(text='<thinking>\nThe', type='text_delta'), index=0, type='content_block_delta')
RawContentBlockDeltaEvent(delta=TextDelta(text=' provide', type='text_delta'), index=0, type='content_block_delta')
...
RawContentBlockStartEvent(content_block=ToolUseBlock(id='toolu_01GJ6x2ddcMG3psDNNe4eDqb', input={}, name='get_weather', type='tool_use'), index=1, type='content_block_start')
RawContentBlockDeltaEvent(delta=InputJsonDelta(partial_json='', type='input_json_delta'), index=1, type='content_block_delta')
```
Note that `delta` has a `type` field. With this implementation, I'm
dropping it because `merge_list` behavior will concatenate strings.
We currently have `index` as a special field when merging lists, would
it be worth adding `type` too?
If so, what do we set as a context block chunk? `text` vs.
`text_delta`/`tool_use` vs `input_json_delta`?
CC @ccurme @efriis @baskaryan
2024-06-14 16:14:43 +00:00
elif (
event . type == " content_block_start "
and event . content_block is not None
and event . content_block . type == " tool_use "
) :
if coerce_content_to_string :
warnings . warn ( " Received unexpected tool content block. " )
content_block = event . content_block . model_dump ( )
content_block [ " index " ] = event . index
core[minor], integrations...[patch]: Support ToolCall as Tool input and ToolMessage as Tool output (#24038)
Changes:
- ToolCall, InvalidToolCall and ToolCallChunk can all accept a "type"
parameter now
- LLM integration packages add "type" to all the above
- Tool supports ToolCall inputs that have "type" specified
- Tool outputs ToolMessage when a ToolCall is passed as input
- Tools can separately specify ToolMessage.content and
ToolMessage.raw_output
- Tools emit events for validation errors (using on_tool_error and
on_tool_end)
Example:
```python
@tool("structured_api", response_format="content_and_raw_output")
def _mock_structured_tool_with_raw_output(
arg1: int, arg2: bool, arg3: Optional[dict] = None
) -> Tuple[str, dict]:
"""A Structured Tool"""
return f"{arg1} {arg2}", {"arg1": arg1, "arg2": arg2, "arg3": arg3}
def test_tool_call_input_tool_message_with_raw_output() -> None:
tool_call: Dict = {
"name": "structured_api",
"args": {"arg1": 1, "arg2": True, "arg3": {"img": "base64string..."}},
"id": "123",
"type": "tool_call",
}
expected = ToolMessage("1 True", raw_output=tool_call["args"], tool_call_id="123")
tool = _mock_structured_tool_with_raw_output
actual = tool.invoke(tool_call)
assert actual == expected
tool_call.pop("type")
with pytest.raises(ValidationError):
tool.invoke(tool_call)
actual_content = tool.invoke(tool_call["args"])
assert actual_content == expected.content
```
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-11 21:54:02 +00:00
tool_call_chunk = create_tool_call_chunk (
index = event . index ,
id = event . content_block . id ,
name = event . content_block . name ,
args = " " ,
)
anthropic[minor]: Adds streaming tool call support for Anthropic (#22687)
Preserves string content chunks for non tool call requests for
convenience.
One thing - Anthropic events look like this:
```
RawContentBlockStartEvent(content_block=TextBlock(text='', type='text'), index=0, type='content_block_start')
RawContentBlockDeltaEvent(delta=TextDelta(text='<thinking>\nThe', type='text_delta'), index=0, type='content_block_delta')
RawContentBlockDeltaEvent(delta=TextDelta(text=' provide', type='text_delta'), index=0, type='content_block_delta')
...
RawContentBlockStartEvent(content_block=ToolUseBlock(id='toolu_01GJ6x2ddcMG3psDNNe4eDqb', input={}, name='get_weather', type='tool_use'), index=1, type='content_block_start')
RawContentBlockDeltaEvent(delta=InputJsonDelta(partial_json='', type='input_json_delta'), index=1, type='content_block_delta')
```
Note that `delta` has a `type` field. With this implementation, I'm
dropping it because `merge_list` behavior will concatenate strings.
We currently have `index` as a special field when merging lists, would
it be worth adding `type` too?
If so, what do we set as a context block chunk? `text` vs.
`text_delta`/`tool_use` vs `input_json_delta`?
CC @ccurme @efriis @baskaryan
2024-06-14 16:14:43 +00:00
message_chunk = AIMessageChunk (
content = [ content_block ] ,
tool_call_chunks = [ tool_call_chunk ] , # type: ignore
)
elif event . type == " content_block_delta " :
if event . delta . type == " text_delta " :
if coerce_content_to_string :
text = event . delta . text
message_chunk = AIMessageChunk ( content = text )
else :
content_block = event . delta . model_dump ( )
content_block [ " index " ] = event . index
content_block [ " type " ] = " text "
message_chunk = AIMessageChunk ( content = [ content_block ] )
elif event . delta . type == " input_json_delta " :
content_block = event . delta . model_dump ( )
content_block [ " index " ] = event . index
content_block [ " type " ] = " tool_use "
tool_call_chunk = {
" index " : event . index ,
" id " : None ,
" name " : None ,
" args " : event . delta . partial_json ,
}
message_chunk = AIMessageChunk (
content = [ content_block ] ,
tool_call_chunks = [ tool_call_chunk ] , # type: ignore
)
anthropic: refactor streaming to use events api; add streaming usage metadata (#22628)
- Refactor streaming to use raw events;
- Add `stream_usage` class attribute and kwarg to stream methods that,
if True, will include separate chunks in the stream containing usage
metadata.
There are two ways to implement streaming with anthropic's python sdk.
They have slight differences in how they surface usage metadata.
1. [Use helper
functions](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-helpers).
This is what we are doing now.
```python
count = 1
with client.messages.stream(**params) as stream:
for text in stream.text_stream:
snapshot = stream.current_message_snapshot
print(f"{count}: {snapshot.usage} -- {text}")
count = count + 1
final_snapshot = stream.get_final_message()
print(f"{count}: {final_snapshot.usage}")
```
```
1: Usage(input_tokens=8, output_tokens=1) -- Hello
2: Usage(input_tokens=8, output_tokens=1) -- !
3: Usage(input_tokens=8, output_tokens=1) -- How
4: Usage(input_tokens=8, output_tokens=1) -- can
5: Usage(input_tokens=8, output_tokens=1) -- I
6: Usage(input_tokens=8, output_tokens=1) -- assist
7: Usage(input_tokens=8, output_tokens=1) -- you
8: Usage(input_tokens=8, output_tokens=1) -- today
9: Usage(input_tokens=8, output_tokens=1) -- ?
10: Usage(input_tokens=8, output_tokens=12)
```
To do this correctly, we need to emit a new chunk at the end of the
stream containing the usage metadata.
2. [Handle raw
events](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-responses)
```python
stream = client.messages.create(**params, stream=True)
count = 1
for event in stream:
print(f"{count}: {event}")
count = count + 1
```
```
1: RawMessageStartEvent(message=Message(id='msg_01Vdyov2kADZTXqSKkfNJXcS', content=[], model='claude-3-haiku-20240307', role='assistant', stop_reason=None, stop_sequence=None, type='message', usage=Usage(input_tokens=8, output_tokens=1)), type='message_start')
2: RawContentBlockStartEvent(content_block=TextBlock(text='', type='text'), index=0, type='content_block_start')
3: RawContentBlockDeltaEvent(delta=TextDelta(text='Hello', type='text_delta'), index=0, type='content_block_delta')
4: RawContentBlockDeltaEvent(delta=TextDelta(text='!', type='text_delta'), index=0, type='content_block_delta')
5: RawContentBlockDeltaEvent(delta=TextDelta(text=' How', type='text_delta'), index=0, type='content_block_delta')
6: RawContentBlockDeltaEvent(delta=TextDelta(text=' can', type='text_delta'), index=0, type='content_block_delta')
7: RawContentBlockDeltaEvent(delta=TextDelta(text=' I', type='text_delta'), index=0, type='content_block_delta')
8: RawContentBlockDeltaEvent(delta=TextDelta(text=' assist', type='text_delta'), index=0, type='content_block_delta')
9: RawContentBlockDeltaEvent(delta=TextDelta(text=' you', type='text_delta'), index=0, type='content_block_delta')
10: RawContentBlockDeltaEvent(delta=TextDelta(text=' today', type='text_delta'), index=0, type='content_block_delta')
11: RawContentBlockDeltaEvent(delta=TextDelta(text='?', type='text_delta'), index=0, type='content_block_delta')
12: RawContentBlockStopEvent(index=0, type='content_block_stop')
13: RawMessageDeltaEvent(delta=Delta(stop_reason='end_turn', stop_sequence=None), type='message_delta', usage=MessageDeltaUsage(output_tokens=12))
14: RawMessageStopEvent(type='message_stop')
```
Here we implement the second option, in part because it should make
things easier when implementing streaming tool calls in the near future.
This would add two new chunks to the stream-- one at the beginning and
one at the end-- with blank content and containing usage metadata. We
add kwargs to the stream methods and a class attribute allowing for this
behavior to be toggled. I enabled it by default. If we merge this we can
add the same kwargs / attribute to OpenAI.
Usage:
```python
from langchain_anthropic import ChatAnthropic
model = ChatAnthropic(
model="claude-3-haiku-20240307",
temperature=0
)
full = None
for chunk in model.stream("hi"):
full = chunk if full is None else full + chunk
print(chunk)
print(f"\nFull: {full}")
```
```
content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 0, 'total_tokens': 8}
content='Hello' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='!' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' How' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' can' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' I' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' assist' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' you' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' today' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='?' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 0, 'output_tokens': 12, 'total_tokens': 12}
Full: content='Hello! How can I assist you today?' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 12, 'total_tokens': 20}
```
2024-06-07 13:21:46 +00:00
elif event . type == " message_delta " and stream_usage :
output_tokens = event . usage . output_tokens
message_chunk = AIMessageChunk (
content = " " ,
usage_metadata = UsageMetadata (
input_tokens = 0 ,
output_tokens = output_tokens ,
total_tokens = output_tokens ,
) ,
2024-07-02 19:16:20 +00:00
response_metadata = {
" stop_reason " : event . delta . stop_reason ,
" stop_sequence " : event . delta . stop_sequence ,
} ,
anthropic: refactor streaming to use events api; add streaming usage metadata (#22628)
- Refactor streaming to use raw events;
- Add `stream_usage` class attribute and kwarg to stream methods that,
if True, will include separate chunks in the stream containing usage
metadata.
There are two ways to implement streaming with anthropic's python sdk.
They have slight differences in how they surface usage metadata.
1. [Use helper
functions](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-helpers).
This is what we are doing now.
```python
count = 1
with client.messages.stream(**params) as stream:
for text in stream.text_stream:
snapshot = stream.current_message_snapshot
print(f"{count}: {snapshot.usage} -- {text}")
count = count + 1
final_snapshot = stream.get_final_message()
print(f"{count}: {final_snapshot.usage}")
```
```
1: Usage(input_tokens=8, output_tokens=1) -- Hello
2: Usage(input_tokens=8, output_tokens=1) -- !
3: Usage(input_tokens=8, output_tokens=1) -- How
4: Usage(input_tokens=8, output_tokens=1) -- can
5: Usage(input_tokens=8, output_tokens=1) -- I
6: Usage(input_tokens=8, output_tokens=1) -- assist
7: Usage(input_tokens=8, output_tokens=1) -- you
8: Usage(input_tokens=8, output_tokens=1) -- today
9: Usage(input_tokens=8, output_tokens=1) -- ?
10: Usage(input_tokens=8, output_tokens=12)
```
To do this correctly, we need to emit a new chunk at the end of the
stream containing the usage metadata.
2. [Handle raw
events](https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#streaming-responses)
```python
stream = client.messages.create(**params, stream=True)
count = 1
for event in stream:
print(f"{count}: {event}")
count = count + 1
```
```
1: RawMessageStartEvent(message=Message(id='msg_01Vdyov2kADZTXqSKkfNJXcS', content=[], model='claude-3-haiku-20240307', role='assistant', stop_reason=None, stop_sequence=None, type='message', usage=Usage(input_tokens=8, output_tokens=1)), type='message_start')
2: RawContentBlockStartEvent(content_block=TextBlock(text='', type='text'), index=0, type='content_block_start')
3: RawContentBlockDeltaEvent(delta=TextDelta(text='Hello', type='text_delta'), index=0, type='content_block_delta')
4: RawContentBlockDeltaEvent(delta=TextDelta(text='!', type='text_delta'), index=0, type='content_block_delta')
5: RawContentBlockDeltaEvent(delta=TextDelta(text=' How', type='text_delta'), index=0, type='content_block_delta')
6: RawContentBlockDeltaEvent(delta=TextDelta(text=' can', type='text_delta'), index=0, type='content_block_delta')
7: RawContentBlockDeltaEvent(delta=TextDelta(text=' I', type='text_delta'), index=0, type='content_block_delta')
8: RawContentBlockDeltaEvent(delta=TextDelta(text=' assist', type='text_delta'), index=0, type='content_block_delta')
9: RawContentBlockDeltaEvent(delta=TextDelta(text=' you', type='text_delta'), index=0, type='content_block_delta')
10: RawContentBlockDeltaEvent(delta=TextDelta(text=' today', type='text_delta'), index=0, type='content_block_delta')
11: RawContentBlockDeltaEvent(delta=TextDelta(text='?', type='text_delta'), index=0, type='content_block_delta')
12: RawContentBlockStopEvent(index=0, type='content_block_stop')
13: RawMessageDeltaEvent(delta=Delta(stop_reason='end_turn', stop_sequence=None), type='message_delta', usage=MessageDeltaUsage(output_tokens=12))
14: RawMessageStopEvent(type='message_stop')
```
Here we implement the second option, in part because it should make
things easier when implementing streaming tool calls in the near future.
This would add two new chunks to the stream-- one at the beginning and
one at the end-- with blank content and containing usage metadata. We
add kwargs to the stream methods and a class attribute allowing for this
behavior to be toggled. I enabled it by default. If we merge this we can
add the same kwargs / attribute to OpenAI.
Usage:
```python
from langchain_anthropic import ChatAnthropic
model = ChatAnthropic(
model="claude-3-haiku-20240307",
temperature=0
)
full = None
for chunk in model.stream("hi"):
full = chunk if full is None else full + chunk
print(chunk)
print(f"\nFull: {full}")
```
```
content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 0, 'total_tokens': 8}
content='Hello' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='!' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' How' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' can' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' I' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' assist' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' you' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content=' today' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='?' id='run-8a20843f-25c7-4025-ad72-9add395899e3'
content='' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 0, 'output_tokens': 12, 'total_tokens': 12}
Full: content='Hello! How can I assist you today?' id='run-8a20843f-25c7-4025-ad72-9add395899e3' usage_metadata={'input_tokens': 8, 'output_tokens': 12, 'total_tokens': 20}
```
2024-06-07 13:21:46 +00:00
)
else :
pass
return message_chunk
2024-05-03 18:29:36 +00:00
@deprecated ( since = " 0.1.0 " , removal = " 0.3.0 " , alternative = " ChatAnthropic " )
2024-02-26 05:57:26 +00:00
class ChatAnthropicMessages ( ChatAnthropic ) :
pass