2023-12-11 21:53:30 +00:00
|
|
|
from __future__ import annotations
|
|
|
|
|
|
|
|
import logging
|
|
|
|
from typing import (
|
|
|
|
TYPE_CHECKING,
|
|
|
|
Any,
|
2023-12-16 00:49:21 +00:00
|
|
|
Callable,
|
2023-12-11 21:53:30 +00:00
|
|
|
Dict,
|
|
|
|
Generator,
|
|
|
|
Iterable,
|
|
|
|
List,
|
|
|
|
Optional,
|
|
|
|
Tuple,
|
|
|
|
TypeVar,
|
|
|
|
Union,
|
|
|
|
)
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
from langchain_core.documents import Document
|
|
|
|
from langchain_core.embeddings import Embeddings
|
|
|
|
from langchain_core.vectorstores import VectorStore
|
|
|
|
|
|
|
|
from langchain_community.vectorstores.utils import maximal_marginal_relevance
|
|
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
|
|
from pymongo.collection import Collection
|
|
|
|
|
|
|
|
MongoDBDocumentType = TypeVar("MongoDBDocumentType", bound=Dict[str, Any])
|
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
DEFAULT_INSERT_BATCH_SIZE = 100
|
|
|
|
|
|
|
|
|
|
|
|
class MongoDBAtlasVectorSearch(VectorStore):
|
|
|
|
"""`MongoDB Atlas Vector Search` vector store.
|
|
|
|
|
|
|
|
To use, you should have both:
|
|
|
|
- the ``pymongo`` python package installed
|
|
|
|
- a connection string associated with a MongoDB Atlas Cluster having deployed an
|
|
|
|
Atlas Search index
|
|
|
|
|
|
|
|
Example:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
from langchain_community.vectorstores import MongoDBAtlasVectorSearch
|
|
|
|
from langchain_community.embeddings.openai import OpenAIEmbeddings
|
|
|
|
from pymongo import MongoClient
|
|
|
|
|
|
|
|
mongo_client = MongoClient("<YOUR-CONNECTION-STRING>")
|
|
|
|
collection = mongo_client["<db_name>"]["<collection_name>"]
|
|
|
|
embeddings = OpenAIEmbeddings()
|
|
|
|
vectorstore = MongoDBAtlasVectorSearch(collection, embeddings)
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
collection: Collection[MongoDBDocumentType],
|
|
|
|
embedding: Embeddings,
|
|
|
|
*,
|
|
|
|
index_name: str = "default",
|
|
|
|
text_key: str = "text",
|
|
|
|
embedding_key: str = "embedding",
|
2023-12-16 00:49:21 +00:00
|
|
|
relevance_score_fn: str = "cosine",
|
2023-12-11 21:53:30 +00:00
|
|
|
):
|
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
collection: MongoDB collection to add the texts to.
|
|
|
|
embedding: Text embedding model to use.
|
|
|
|
text_key: MongoDB field that will contain the text for each
|
|
|
|
document.
|
|
|
|
embedding_key: MongoDB field that will contain the embedding for
|
|
|
|
each document.
|
|
|
|
index_name: Name of the Atlas Search index.
|
2023-12-16 00:49:21 +00:00
|
|
|
relevance_score_fn: The similarity score used for the index.
|
|
|
|
Currently supported: Euclidean, cosine, and dot product.
|
2023-12-11 21:53:30 +00:00
|
|
|
"""
|
|
|
|
self._collection = collection
|
|
|
|
self._embedding = embedding
|
|
|
|
self._index_name = index_name
|
|
|
|
self._text_key = text_key
|
|
|
|
self._embedding_key = embedding_key
|
2023-12-16 00:49:21 +00:00
|
|
|
self._relevance_score_fn = relevance_score_fn
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
@property
|
|
|
|
def embeddings(self) -> Embeddings:
|
|
|
|
return self._embedding
|
|
|
|
|
2023-12-16 00:49:21 +00:00
|
|
|
def _select_relevance_score_fn(self) -> Callable[[float], float]:
|
|
|
|
if self._relevance_score_fn == "euclidean":
|
|
|
|
return self._euclidean_relevance_score_fn
|
|
|
|
elif self._relevance_score_fn == "dotProduct":
|
|
|
|
return self._max_inner_product_relevance_score_fn
|
|
|
|
elif self._relevance_score_fn == "cosine":
|
|
|
|
return self._cosine_relevance_score_fn
|
|
|
|
else:
|
|
|
|
raise NotImplementedError(
|
|
|
|
f"No relevance score function for ${self._relevance_score_fn}"
|
|
|
|
)
|
|
|
|
|
2023-12-11 21:53:30 +00:00
|
|
|
@classmethod
|
|
|
|
def from_connection_string(
|
|
|
|
cls,
|
|
|
|
connection_string: str,
|
|
|
|
namespace: str,
|
|
|
|
embedding: Embeddings,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> MongoDBAtlasVectorSearch:
|
|
|
|
"""Construct a `MongoDB Atlas Vector Search` vector store
|
|
|
|
from a MongoDB connection URI.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
connection_string: A valid MongoDB connection URI.
|
|
|
|
namespace: A valid MongoDB namespace (database and collection).
|
|
|
|
embedding: The text embedding model to use for the vector store.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
A new MongoDBAtlasVectorSearch instance.
|
|
|
|
|
|
|
|
"""
|
|
|
|
try:
|
|
|
|
from importlib.metadata import version
|
|
|
|
|
|
|
|
from pymongo import MongoClient
|
|
|
|
from pymongo.driver_info import DriverInfo
|
|
|
|
except ImportError:
|
|
|
|
raise ImportError(
|
|
|
|
"Could not import pymongo, please install it with "
|
|
|
|
"`pip install pymongo`."
|
|
|
|
)
|
|
|
|
client: MongoClient = MongoClient(
|
|
|
|
connection_string,
|
|
|
|
driver=DriverInfo(name="Langchain", version=version("langchain")),
|
|
|
|
)
|
|
|
|
db_name, collection_name = namespace.split(".")
|
|
|
|
collection = client[db_name][collection_name]
|
|
|
|
return cls(collection, embedding, **kwargs)
|
|
|
|
|
|
|
|
def add_texts(
|
|
|
|
self,
|
|
|
|
texts: Iterable[str],
|
|
|
|
metadatas: Optional[List[Dict[str, Any]]] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> List:
|
|
|
|
"""Run more texts through the embeddings and add to the vectorstore.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
texts: Iterable of strings to add to the vectorstore.
|
|
|
|
metadatas: Optional list of metadatas associated with the texts.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
List of ids from adding the texts into the vectorstore.
|
|
|
|
"""
|
|
|
|
batch_size = kwargs.get("batch_size", DEFAULT_INSERT_BATCH_SIZE)
|
|
|
|
_metadatas: Union[List, Generator] = metadatas or ({} for _ in texts)
|
|
|
|
texts_batch = []
|
|
|
|
metadatas_batch = []
|
|
|
|
result_ids = []
|
|
|
|
for i, (text, metadata) in enumerate(zip(texts, _metadatas)):
|
|
|
|
texts_batch.append(text)
|
|
|
|
metadatas_batch.append(metadata)
|
|
|
|
if (i + 1) % batch_size == 0:
|
|
|
|
result_ids.extend(self._insert_texts(texts_batch, metadatas_batch))
|
|
|
|
texts_batch = []
|
|
|
|
metadatas_batch = []
|
|
|
|
if texts_batch:
|
|
|
|
result_ids.extend(self._insert_texts(texts_batch, metadatas_batch))
|
|
|
|
return result_ids
|
|
|
|
|
|
|
|
def _insert_texts(self, texts: List[str], metadatas: List[Dict[str, Any]]) -> List:
|
|
|
|
if not texts:
|
|
|
|
return []
|
|
|
|
# Embed and create the documents
|
|
|
|
embeddings = self._embedding.embed_documents(texts)
|
|
|
|
to_insert = [
|
|
|
|
{self._text_key: t, self._embedding_key: embedding, **m}
|
|
|
|
for t, m, embedding in zip(texts, metadatas, embeddings)
|
|
|
|
]
|
|
|
|
# insert the documents in MongoDB Atlas
|
|
|
|
insert_result = self._collection.insert_many(to_insert) # type: ignore
|
|
|
|
return insert_result.inserted_ids
|
|
|
|
|
|
|
|
def _similarity_search_with_score(
|
|
|
|
self,
|
|
|
|
embedding: List[float],
|
|
|
|
k: int = 4,
|
|
|
|
pre_filter: Optional[Dict] = None,
|
|
|
|
post_filter_pipeline: Optional[List[Dict]] = None,
|
|
|
|
) -> List[Tuple[Document, float]]:
|
|
|
|
params = {
|
|
|
|
"queryVector": embedding,
|
|
|
|
"path": self._embedding_key,
|
|
|
|
"numCandidates": k * 10,
|
|
|
|
"limit": k,
|
|
|
|
"index": self._index_name,
|
|
|
|
}
|
|
|
|
if pre_filter:
|
|
|
|
params["filter"] = pre_filter
|
|
|
|
query = {"$vectorSearch": params}
|
|
|
|
|
|
|
|
pipeline = [
|
|
|
|
query,
|
|
|
|
{"$set": {"score": {"$meta": "vectorSearchScore"}}},
|
|
|
|
]
|
|
|
|
if post_filter_pipeline is not None:
|
|
|
|
pipeline.extend(post_filter_pipeline)
|
|
|
|
cursor = self._collection.aggregate(pipeline) # type: ignore[arg-type]
|
|
|
|
docs = []
|
|
|
|
for res in cursor:
|
|
|
|
text = res.pop(self._text_key)
|
|
|
|
score = res.pop("score")
|
2024-01-24 02:18:28 +00:00
|
|
|
del res["embedding"]
|
2023-12-11 21:53:30 +00:00
|
|
|
docs.append((Document(page_content=text, metadata=res), score))
|
|
|
|
return docs
|
|
|
|
|
|
|
|
def similarity_search_with_score(
|
|
|
|
self,
|
|
|
|
query: str,
|
|
|
|
k: int = 4,
|
|
|
|
pre_filter: Optional[Dict] = None,
|
|
|
|
post_filter_pipeline: Optional[List[Dict]] = None,
|
|
|
|
) -> List[Tuple[Document, float]]:
|
|
|
|
"""Return MongoDB documents most similar to the given query and their scores.
|
|
|
|
|
2024-01-24 02:18:28 +00:00
|
|
|
Uses the vectorSearch operator available in MongoDB Atlas Search.
|
|
|
|
For more: https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-stage/
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
Args:
|
|
|
|
query: Text to look up documents similar to.
|
|
|
|
k: (Optional) number of documents to return. Defaults to 4.
|
|
|
|
pre_filter: (Optional) dictionary of argument(s) to prefilter document
|
|
|
|
fields on.
|
|
|
|
post_filter_pipeline: (Optional) Pipeline of MongoDB aggregation stages
|
2024-01-24 02:18:28 +00:00
|
|
|
following the vectorSearch stage.
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
Returns:
|
|
|
|
List of documents most similar to the query and their scores.
|
|
|
|
"""
|
|
|
|
embedding = self._embedding.embed_query(query)
|
|
|
|
docs = self._similarity_search_with_score(
|
|
|
|
embedding,
|
|
|
|
k=k,
|
|
|
|
pre_filter=pre_filter,
|
|
|
|
post_filter_pipeline=post_filter_pipeline,
|
|
|
|
)
|
|
|
|
return docs
|
|
|
|
|
|
|
|
def similarity_search(
|
|
|
|
self,
|
|
|
|
query: str,
|
|
|
|
k: int = 4,
|
|
|
|
pre_filter: Optional[Dict] = None,
|
|
|
|
post_filter_pipeline: Optional[List[Dict]] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> List[Document]:
|
|
|
|
"""Return MongoDB documents most similar to the given query.
|
|
|
|
|
2024-01-24 02:18:28 +00:00
|
|
|
Uses the vectorSearch operator available in MongoDB Atlas Search.
|
|
|
|
For more: https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-stage/
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
Args:
|
|
|
|
query: Text to look up documents similar to.
|
|
|
|
k: (Optional) number of documents to return. Defaults to 4.
|
|
|
|
pre_filter: (Optional) dictionary of argument(s) to prefilter document
|
|
|
|
fields on.
|
|
|
|
post_filter_pipeline: (Optional) Pipeline of MongoDB aggregation stages
|
2024-01-24 02:18:28 +00:00
|
|
|
following the vectorSearch stage.
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
Returns:
|
|
|
|
List of documents most similar to the query and their scores.
|
|
|
|
"""
|
2024-01-24 02:18:28 +00:00
|
|
|
additional = kwargs.get("additional")
|
2023-12-11 21:53:30 +00:00
|
|
|
docs_and_scores = self.similarity_search_with_score(
|
|
|
|
query,
|
|
|
|
k=k,
|
|
|
|
pre_filter=pre_filter,
|
|
|
|
post_filter_pipeline=post_filter_pipeline,
|
|
|
|
)
|
2024-01-24 02:18:28 +00:00
|
|
|
|
|
|
|
if additional and "similarity_score" in additional:
|
|
|
|
for doc, score in docs_and_scores:
|
|
|
|
doc.metadata["score"] = score
|
2023-12-11 21:53:30 +00:00
|
|
|
return [doc for doc, _ in docs_and_scores]
|
|
|
|
|
|
|
|
def max_marginal_relevance_search(
|
|
|
|
self,
|
|
|
|
query: str,
|
|
|
|
k: int = 4,
|
|
|
|
fetch_k: int = 20,
|
|
|
|
lambda_mult: float = 0.5,
|
|
|
|
pre_filter: Optional[Dict] = None,
|
|
|
|
post_filter_pipeline: Optional[List[Dict]] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> List[Document]:
|
|
|
|
"""Return documents selected using the maximal marginal relevance.
|
|
|
|
|
|
|
|
Maximal marginal relevance optimizes for similarity to query AND diversity
|
|
|
|
among selected documents.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
query: Text to look up documents similar to.
|
|
|
|
k: (Optional) number of documents to return. Defaults to 4.
|
|
|
|
fetch_k: (Optional) number of documents to fetch before passing to MMR
|
|
|
|
algorithm. Defaults to 20.
|
|
|
|
lambda_mult: Number between 0 and 1 that determines the degree
|
|
|
|
of diversity among the results with 0 corresponding
|
|
|
|
to maximum diversity and 1 to minimum diversity.
|
|
|
|
Defaults to 0.5.
|
|
|
|
pre_filter: (Optional) dictionary of argument(s) to prefilter on document
|
|
|
|
fields.
|
|
|
|
post_filter_pipeline: (Optional) pipeline of MongoDB aggregation stages
|
2024-01-24 02:18:28 +00:00
|
|
|
following the vectorSearch stage.
|
2023-12-11 21:53:30 +00:00
|
|
|
Returns:
|
|
|
|
List of documents selected by maximal marginal relevance.
|
|
|
|
"""
|
|
|
|
query_embedding = self._embedding.embed_query(query)
|
|
|
|
docs = self._similarity_search_with_score(
|
|
|
|
query_embedding,
|
|
|
|
k=fetch_k,
|
|
|
|
pre_filter=pre_filter,
|
|
|
|
post_filter_pipeline=post_filter_pipeline,
|
|
|
|
)
|
|
|
|
mmr_doc_indexes = maximal_marginal_relevance(
|
|
|
|
np.array(query_embedding),
|
|
|
|
[doc.metadata[self._embedding_key] for doc, _ in docs],
|
|
|
|
k=k,
|
|
|
|
lambda_mult=lambda_mult,
|
|
|
|
)
|
|
|
|
mmr_docs = [docs[i][0] for i in mmr_doc_indexes]
|
|
|
|
return mmr_docs
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def from_texts(
|
|
|
|
cls,
|
|
|
|
texts: List[str],
|
|
|
|
embedding: Embeddings,
|
|
|
|
metadatas: Optional[List[Dict]] = None,
|
|
|
|
collection: Optional[Collection[MongoDBDocumentType]] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> MongoDBAtlasVectorSearch:
|
|
|
|
"""Construct a `MongoDB Atlas Vector Search` vector store from raw documents.
|
|
|
|
|
|
|
|
This is a user-friendly interface that:
|
|
|
|
1. Embeds documents.
|
|
|
|
2. Adds the documents to a provided MongoDB Atlas Vector Search index
|
|
|
|
(Lucene)
|
|
|
|
|
|
|
|
This is intended to be a quick way to get started.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
.. code-block:: python
|
|
|
|
from pymongo import MongoClient
|
|
|
|
|
|
|
|
from langchain_community.vectorstores import MongoDBAtlasVectorSearch
|
|
|
|
from langchain_community.embeddings import OpenAIEmbeddings
|
|
|
|
|
|
|
|
mongo_client = MongoClient("<YOUR-CONNECTION-STRING>")
|
|
|
|
collection = mongo_client["<db_name>"]["<collection_name>"]
|
|
|
|
embeddings = OpenAIEmbeddings()
|
|
|
|
vectorstore = MongoDBAtlasVectorSearch.from_texts(
|
|
|
|
texts,
|
|
|
|
embeddings,
|
|
|
|
metadatas=metadatas,
|
|
|
|
collection=collection
|
|
|
|
)
|
|
|
|
"""
|
|
|
|
if collection is None:
|
|
|
|
raise ValueError("Must provide 'collection' named parameter.")
|
|
|
|
vectorstore = cls(collection, embedding, **kwargs)
|
|
|
|
vectorstore.add_texts(texts, metadatas=metadatas)
|
|
|
|
return vectorstore
|