2023-10-27 02:44:30 +00:00
|
|
|
from operator import itemgetter
|
2023-11-01 00:18:35 +00:00
|
|
|
from typing import List, Optional, Tuple
|
2023-10-27 02:44:30 +00:00
|
|
|
|
2023-11-01 00:18:35 +00:00
|
|
|
from langchain.schema import BaseMessage, format_document
|
2024-01-02 20:32:16 +00:00
|
|
|
from langchain_community.chat_models import ChatOpenAI
|
|
|
|
from langchain_community.embeddings import HuggingFaceEmbeddings
|
2024-01-02 21:47:11 +00:00
|
|
|
from langchain_community.vectorstores.elasticsearch import ElasticsearchStore
|
docs[patch], templates[patch]: Import from core (#14575)
Update imports to use core for the low-hanging fruit changes. Ran
following
```bash
git grep -l 'langchain.schema.runnable' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.runnable/langchain_core.runnables/g'
git grep -l 'langchain.schema.output_parser' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.output_parser/langchain_core.output_parsers/g'
git grep -l 'langchain.schema.messages' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.messages/langchain_core.messages/g'
git grep -l 'langchain.schema.chat_histry' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.chat_history/langchain_core.chat_history/g'
git grep -l 'langchain.schema.prompt_template' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.prompt_template/langchain_core.prompts/g'
git grep -l 'from langchain.pydantic_v1' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.pydantic_v1/from langchain_core.pydantic_v1/g'
git grep -l 'from langchain.tools.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.tools\.base/from langchain_core.tools/g'
git grep -l 'from langchain.chat_models.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.chat_models.base/from langchain_core.language_models.chat_models/g'
git grep -l 'from langchain.llms.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.llms\.base\ /from langchain_core.language_models.llms\ /g'
git grep -l 'from langchain.embeddings.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.embeddings\.base/from langchain_core.embeddings/g'
git grep -l 'from langchain.vectorstores.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.vectorstores\.base/from langchain_core.vectorstores/g'
git grep -l 'from langchain.agents.tools' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.agents\.tools/from langchain_core.tools/g'
git grep -l 'from langchain.schema.output' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.output\ /from langchain_core.outputs\ /g'
git grep -l 'from langchain.schema.embeddings' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.embeddings/from langchain_core.embeddings/g'
git grep -l 'from langchain.schema.document' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.document/from langchain_core.documents/g'
git grep -l 'from langchain.schema.agent' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.agent/from langchain_core.agents/g'
git grep -l 'from langchain.schema.prompt ' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.prompt\ /from langchain_core.prompt_values /g'
git grep -l 'from langchain.schema.language_model' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.language_model/from langchain_core.language_models/g'
```
2023-12-12 00:49:10 +00:00
|
|
|
from langchain_core.output_parsers import StrOutputParser
|
2023-12-12 23:31:14 +00:00
|
|
|
from langchain_core.pydantic_v1 import BaseModel, Field
|
docs[patch], templates[patch]: Import from core (#14575)
Update imports to use core for the low-hanging fruit changes. Ran
following
```bash
git grep -l 'langchain.schema.runnable' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.runnable/langchain_core.runnables/g'
git grep -l 'langchain.schema.output_parser' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.output_parser/langchain_core.output_parsers/g'
git grep -l 'langchain.schema.messages' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.messages/langchain_core.messages/g'
git grep -l 'langchain.schema.chat_histry' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.chat_history/langchain_core.chat_history/g'
git grep -l 'langchain.schema.prompt_template' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.prompt_template/langchain_core.prompts/g'
git grep -l 'from langchain.pydantic_v1' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.pydantic_v1/from langchain_core.pydantic_v1/g'
git grep -l 'from langchain.tools.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.tools\.base/from langchain_core.tools/g'
git grep -l 'from langchain.chat_models.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.chat_models.base/from langchain_core.language_models.chat_models/g'
git grep -l 'from langchain.llms.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.llms\.base\ /from langchain_core.language_models.llms\ /g'
git grep -l 'from langchain.embeddings.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.embeddings\.base/from langchain_core.embeddings/g'
git grep -l 'from langchain.vectorstores.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.vectorstores\.base/from langchain_core.vectorstores/g'
git grep -l 'from langchain.agents.tools' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.agents\.tools/from langchain_core.tools/g'
git grep -l 'from langchain.schema.output' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.output\ /from langchain_core.outputs\ /g'
git grep -l 'from langchain.schema.embeddings' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.embeddings/from langchain_core.embeddings/g'
git grep -l 'from langchain.schema.document' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.document/from langchain_core.documents/g'
git grep -l 'from langchain.schema.agent' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.agent/from langchain_core.agents/g'
git grep -l 'from langchain.schema.prompt ' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.prompt\ /from langchain_core.prompt_values /g'
git grep -l 'from langchain.schema.language_model' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.language_model/from langchain_core.language_models/g'
```
2023-12-12 00:49:10 +00:00
|
|
|
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
|
2023-10-27 02:44:30 +00:00
|
|
|
|
2023-10-26 01:47:42 +00:00
|
|
|
from .connection import es_connection_details
|
2023-10-27 02:44:30 +00:00
|
|
|
from .prompts import CONDENSE_QUESTION_PROMPT, DOCUMENT_PROMPT, LLM_CONTEXT_PROMPT
|
2023-10-26 01:47:42 +00:00
|
|
|
|
|
|
|
# Setup connecting to Elasticsearch
|
|
|
|
vectorstore = ElasticsearchStore(
|
|
|
|
**es_connection_details,
|
|
|
|
embedding=HuggingFaceEmbeddings(
|
|
|
|
model_name="all-MiniLM-L6-v2", model_kwargs={"device": "cpu"}
|
|
|
|
),
|
|
|
|
index_name="workplace-search-example",
|
|
|
|
)
|
|
|
|
retriever = vectorstore.as_retriever()
|
|
|
|
|
|
|
|
# Set up LLM to user
|
|
|
|
llm = ChatOpenAI(temperature=0)
|
|
|
|
|
|
|
|
|
|
|
|
def _combine_documents(
|
|
|
|
docs, document_prompt=DOCUMENT_PROMPT, document_separator="\n\n"
|
|
|
|
):
|
|
|
|
doc_strings = [format_document(doc, document_prompt) for doc in docs]
|
|
|
|
return document_separator.join(doc_strings)
|
|
|
|
|
|
|
|
|
|
|
|
def _format_chat_history(chat_history: List[Tuple]) -> str:
|
|
|
|
buffer = ""
|
|
|
|
for dialogue_turn in chat_history:
|
|
|
|
human = "Human: " + dialogue_turn[0]
|
|
|
|
ai = "Assistant: " + dialogue_turn[1]
|
|
|
|
buffer += "\n" + "\n".join([human, ai])
|
|
|
|
return buffer
|
|
|
|
|
|
|
|
|
2023-11-01 00:18:35 +00:00
|
|
|
class ChainInput(BaseModel):
|
|
|
|
chat_history: Optional[List[BaseMessage]] = Field(
|
|
|
|
description="Previous chat messages."
|
|
|
|
)
|
|
|
|
question: str = Field(..., description="The question to answer.")
|
|
|
|
|
|
|
|
|
2023-12-01 21:36:40 +00:00
|
|
|
_inputs = RunnableParallel(
|
2023-10-26 01:47:42 +00:00
|
|
|
standalone_question=RunnablePassthrough.assign(
|
|
|
|
chat_history=lambda x: _format_chat_history(x["chat_history"])
|
|
|
|
)
|
|
|
|
| CONDENSE_QUESTION_PROMPT
|
|
|
|
| llm
|
|
|
|
| StrOutputParser(),
|
|
|
|
)
|
|
|
|
|
|
|
|
_context = {
|
|
|
|
"context": itemgetter("standalone_question") | retriever | _combine_documents,
|
|
|
|
"question": lambda x: x["standalone_question"],
|
|
|
|
}
|
|
|
|
|
|
|
|
chain = _inputs | _context | LLM_CONTEXT_PROMPT | llm | StrOutputParser()
|
2023-11-01 00:18:35 +00:00
|
|
|
|
|
|
|
chain = chain.with_types(input_type=ChainInput)
|