mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
524 lines
22 KiB
Python
524 lines
22 KiB
Python
|
from __future__ import annotations
|
||
|
|
||
|
import logging
|
||
|
import os
|
||
|
import warnings
|
||
|
from typing import (
|
||
|
Any,
|
||
|
Dict,
|
||
|
Iterable,
|
||
|
List,
|
||
|
Literal,
|
||
|
Mapping,
|
||
|
Optional,
|
||
|
Sequence,
|
||
|
Set,
|
||
|
Tuple,
|
||
|
Union,
|
||
|
cast,
|
||
|
)
|
||
|
|
||
|
import numpy as np
|
||
|
import openai
|
||
|
import tiktoken
|
||
|
from langchain_core.embeddings import Embeddings
|
||
|
from langchain_core.pydantic_v1 import BaseModel, Extra, Field, root_validator
|
||
|
from langchain_core.utils import get_from_dict_or_env, get_pydantic_field_names
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
class OpenAIEmbeddings(BaseModel, Embeddings):
|
||
|
"""OpenAI embedding models.
|
||
|
|
||
|
To use, you should have the
|
||
|
environment variable ``OPENAI_API_KEY`` set with your API key or pass it
|
||
|
as a named parameter to the constructor.
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
from langchain_community.embeddings import OpenAIEmbeddings
|
||
|
openai = OpenAIEmbeddings(openai_api_key="my-api-key")
|
||
|
|
||
|
In order to use the library with Microsoft Azure endpoints, you need to set
|
||
|
the OPENAI_API_TYPE, OPENAI_API_BASE, OPENAI_API_KEY and OPENAI_API_VERSION.
|
||
|
The OPENAI_API_TYPE must be set to 'azure' and the others correspond to
|
||
|
the properties of your endpoint.
|
||
|
In addition, the deployment name must be passed as the model parameter.
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
import os
|
||
|
|
||
|
os.environ["OPENAI_API_TYPE"] = "azure"
|
||
|
os.environ["OPENAI_API_BASE"] = "https://<your-endpoint.openai.azure.com/"
|
||
|
os.environ["OPENAI_API_KEY"] = "your AzureOpenAI key"
|
||
|
os.environ["OPENAI_API_VERSION"] = "2023-05-15"
|
||
|
os.environ["OPENAI_PROXY"] = "http://your-corporate-proxy:8080"
|
||
|
|
||
|
from langchain_community.embeddings.openai import OpenAIEmbeddings
|
||
|
embeddings = OpenAIEmbeddings(
|
||
|
deployment="your-embeddings-deployment-name",
|
||
|
model="your-embeddings-model-name",
|
||
|
openai_api_base="https://your-endpoint.openai.azure.com/",
|
||
|
openai_api_type="azure",
|
||
|
)
|
||
|
text = "This is a test query."
|
||
|
query_result = embeddings.embed_query(text)
|
||
|
|
||
|
"""
|
||
|
|
||
|
client: Any = Field(default=None, exclude=True) #: :meta private:
|
||
|
async_client: Any = Field(default=None, exclude=True) #: :meta private:
|
||
|
model: str = "text-embedding-ada-002"
|
||
|
# to support Azure OpenAI Service custom deployment names
|
||
|
deployment: Optional[str] = model
|
||
|
# TODO: Move to AzureOpenAIEmbeddings.
|
||
|
openai_api_version: Optional[str] = Field(default=None, alias="api_version")
|
||
|
"""Automatically inferred from env var `OPENAI_API_VERSION` if not provided."""
|
||
|
# to support Azure OpenAI Service custom endpoints
|
||
|
openai_api_base: Optional[str] = Field(default=None, alias="base_url")
|
||
|
"""Base URL path for API requests, leave blank if not using a proxy or service
|
||
|
emulator."""
|
||
|
# to support Azure OpenAI Service custom endpoints
|
||
|
openai_api_type: Optional[str] = None
|
||
|
# to support explicit proxy for OpenAI
|
||
|
openai_proxy: Optional[str] = None
|
||
|
embedding_ctx_length: int = 8191
|
||
|
"""The maximum number of tokens to embed at once."""
|
||
|
openai_api_key: Optional[str] = Field(default=None, alias="api_key")
|
||
|
"""Automatically inferred from env var `OPENAI_API_KEY` if not provided."""
|
||
|
openai_organization: Optional[str] = Field(default=None, alias="organization")
|
||
|
"""Automatically inferred from env var `OPENAI_ORG_ID` if not provided."""
|
||
|
allowed_special: Union[Literal["all"], Set[str]] = set()
|
||
|
disallowed_special: Union[Literal["all"], Set[str], Sequence[str]] = "all"
|
||
|
chunk_size: int = 1000
|
||
|
"""Maximum number of texts to embed in each batch"""
|
||
|
max_retries: int = 2
|
||
|
"""Maximum number of retries to make when generating."""
|
||
|
request_timeout: Optional[Union[float, Tuple[float, float], Any]] = Field(
|
||
|
default=None, alias="timeout"
|
||
|
)
|
||
|
"""Timeout for requests to OpenAI completion API. Can be float, httpx.Timeout or
|
||
|
None."""
|
||
|
headers: Any = None
|
||
|
tiktoken_enabled: bool = True
|
||
|
"""Set this to False for non-OpenAI implementations of the embeddings API, e.g.
|
||
|
the `--extensions openai` extension for `text-generation-webui`"""
|
||
|
tiktoken_model_name: Optional[str] = None
|
||
|
"""The model name to pass to tiktoken when using this class.
|
||
|
Tiktoken is used to count the number of tokens in documents to constrain
|
||
|
them to be under a certain limit. By default, when set to None, this will
|
||
|
be the same as the embedding model name. However, there are some cases
|
||
|
where you may want to use this Embedding class with a model name not
|
||
|
supported by tiktoken. This can include when using Azure embeddings or
|
||
|
when using one of the many model providers that expose an OpenAI-like
|
||
|
API but with different models. In those cases, in order to avoid erroring
|
||
|
when tiktoken is called, you can specify a model name to use here."""
|
||
|
show_progress_bar: bool = False
|
||
|
"""Whether to show a progress bar when embedding."""
|
||
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||
|
"""Holds any model parameters valid for `create` call not explicitly specified."""
|
||
|
skip_empty: bool = False
|
||
|
"""Whether to skip empty strings when embedding or raise an error.
|
||
|
Defaults to not skipping."""
|
||
|
default_headers: Union[Mapping[str, str], None] = None
|
||
|
default_query: Union[Mapping[str, object], None] = None
|
||
|
# Configure a custom httpx client. See the
|
||
|
# [httpx documentation](https://www.python-httpx.org/api/#client) for more details.
|
||
|
retry_min_seconds: int = 4
|
||
|
"""Min number of seconds to wait between retries"""
|
||
|
retry_max_seconds: int = 20
|
||
|
"""Max number of seconds to wait between retries"""
|
||
|
http_client: Union[Any, None] = None
|
||
|
"""Optional httpx.Client."""
|
||
|
|
||
|
class Config:
|
||
|
"""Configuration for this pydantic object."""
|
||
|
|
||
|
extra = Extra.forbid
|
||
|
allow_population_by_field_name = True
|
||
|
|
||
|
@root_validator(pre=True)
|
||
|
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
||
|
"""Build extra kwargs from additional params that were passed in."""
|
||
|
all_required_field_names = get_pydantic_field_names(cls)
|
||
|
extra = values.get("model_kwargs", {})
|
||
|
for field_name in list(values):
|
||
|
if field_name in extra:
|
||
|
raise ValueError(f"Found {field_name} supplied twice.")
|
||
|
if field_name not in all_required_field_names:
|
||
|
warnings.warn(
|
||
|
f"""WARNING! {field_name} is not default parameter.
|
||
|
{field_name} was transferred to model_kwargs.
|
||
|
Please confirm that {field_name} is what you intended."""
|
||
|
)
|
||
|
extra[field_name] = values.pop(field_name)
|
||
|
|
||
|
invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
|
||
|
if invalid_model_kwargs:
|
||
|
raise ValueError(
|
||
|
f"Parameters {invalid_model_kwargs} should be specified explicitly. "
|
||
|
f"Instead they were passed in as part of `model_kwargs` parameter."
|
||
|
)
|
||
|
|
||
|
values["model_kwargs"] = extra
|
||
|
return values
|
||
|
|
||
|
@root_validator()
|
||
|
def validate_environment(cls, values: Dict) -> Dict:
|
||
|
"""Validate that api key and python package exists in environment."""
|
||
|
values["openai_api_key"] = get_from_dict_or_env(
|
||
|
values, "openai_api_key", "OPENAI_API_KEY"
|
||
|
)
|
||
|
values["openai_api_base"] = values["openai_api_base"] or os.getenv(
|
||
|
"OPENAI_API_BASE"
|
||
|
)
|
||
|
values["openai_api_type"] = get_from_dict_or_env(
|
||
|
values,
|
||
|
"openai_api_type",
|
||
|
"OPENAI_API_TYPE",
|
||
|
default="",
|
||
|
)
|
||
|
values["openai_proxy"] = get_from_dict_or_env(
|
||
|
values,
|
||
|
"openai_proxy",
|
||
|
"OPENAI_PROXY",
|
||
|
default="",
|
||
|
)
|
||
|
if values["openai_api_type"] in ("azure", "azure_ad", "azuread"):
|
||
|
default_api_version = "2023-05-15"
|
||
|
# Azure OpenAI embedding models allow a maximum of 16 texts
|
||
|
# at a time in each batch
|
||
|
# See: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#embeddings
|
||
|
values["chunk_size"] = min(values["chunk_size"], 16)
|
||
|
else:
|
||
|
default_api_version = ""
|
||
|
values["openai_api_version"] = get_from_dict_or_env(
|
||
|
values,
|
||
|
"openai_api_version",
|
||
|
"OPENAI_API_VERSION",
|
||
|
default=default_api_version,
|
||
|
)
|
||
|
# Check OPENAI_ORGANIZATION for backwards compatibility.
|
||
|
values["openai_organization"] = (
|
||
|
values["openai_organization"]
|
||
|
or os.getenv("OPENAI_ORG_ID")
|
||
|
or os.getenv("OPENAI_ORGANIZATION")
|
||
|
)
|
||
|
if values["openai_api_type"] in ("azure", "azure_ad", "azuread"):
|
||
|
raise ValueError(
|
||
|
"If you are using Azure, "
|
||
|
"please use the `AzureOpenAIEmbeddings` class."
|
||
|
)
|
||
|
client_params = {
|
||
|
"api_key": values["openai_api_key"],
|
||
|
"organization": values["openai_organization"],
|
||
|
"base_url": values["openai_api_base"],
|
||
|
"timeout": values["request_timeout"],
|
||
|
"max_retries": values["max_retries"],
|
||
|
"default_headers": values["default_headers"],
|
||
|
"default_query": values["default_query"],
|
||
|
"http_client": values["http_client"],
|
||
|
}
|
||
|
if not values.get("client"):
|
||
|
values["client"] = openai.OpenAI(**client_params).embeddings
|
||
|
if not values.get("async_client"):
|
||
|
values["async_client"] = openai.AsyncOpenAI(**client_params).embeddings
|
||
|
return values
|
||
|
|
||
|
@property
|
||
|
def _invocation_params(self) -> Dict[str, Any]:
|
||
|
return {"model": self.model, **self.model_kwargs}
|
||
|
|
||
|
# please refer to
|
||
|
# https://github.com/openai/openai-cookbook/blob/main/examples/Embedding_long_inputs.ipynb
|
||
|
def _get_len_safe_embeddings(
|
||
|
self, texts: List[str], *, engine: str, chunk_size: Optional[int] = None
|
||
|
) -> List[List[float]]:
|
||
|
"""
|
||
|
Generate length-safe embeddings for a list of texts.
|
||
|
|
||
|
This method handles tokenization and embedding generation, respecting the
|
||
|
set embedding context length and chunk size. It supports both tiktoken
|
||
|
and HuggingFace tokenizer based on the tiktoken_enabled flag.
|
||
|
|
||
|
Args:
|
||
|
texts (List[str]): A list of texts to embed.
|
||
|
engine (str): The engine or model to use for embeddings.
|
||
|
chunk_size (Optional[int]): The size of chunks for processing embeddings.
|
||
|
|
||
|
Returns:
|
||
|
List[List[float]]: A list of embeddings for each input text.
|
||
|
"""
|
||
|
|
||
|
tokens = []
|
||
|
indices = []
|
||
|
model_name = self.tiktoken_model_name or self.model
|
||
|
_chunk_size = chunk_size or self.chunk_size
|
||
|
|
||
|
# If tiktoken flag set to False
|
||
|
if not self.tiktoken_enabled:
|
||
|
try:
|
||
|
from transformers import AutoTokenizer # noqa: F401
|
||
|
except ImportError:
|
||
|
raise ValueError(
|
||
|
"Could not import transformers python package. "
|
||
|
"This is needed in order to for OpenAIEmbeddings without "
|
||
|
"`tiktoken`. Please install it with `pip install transformers`. "
|
||
|
)
|
||
|
|
||
|
tokenizer = AutoTokenizer.from_pretrained(
|
||
|
pretrained_model_name_or_path=model_name
|
||
|
)
|
||
|
for i, text in enumerate(texts):
|
||
|
# Tokenize the text using HuggingFace transformers
|
||
|
tokenized = tokenizer.encode(text, add_special_tokens=False)
|
||
|
|
||
|
# Split tokens into chunks respecting the embedding_ctx_length
|
||
|
for j in range(0, len(tokenized), self.embedding_ctx_length):
|
||
|
token_chunk = tokenized[j : j + self.embedding_ctx_length]
|
||
|
|
||
|
# Convert token IDs back to a string
|
||
|
chunk_text = tokenizer.decode(token_chunk)
|
||
|
tokens.append(chunk_text)
|
||
|
indices.append(i)
|
||
|
else:
|
||
|
try:
|
||
|
encoding = tiktoken.encoding_for_model(model_name)
|
||
|
except KeyError:
|
||
|
logger.warning("Warning: model not found. Using cl100k_base encoding.")
|
||
|
model = "cl100k_base"
|
||
|
encoding = tiktoken.get_encoding(model)
|
||
|
for i, text in enumerate(texts):
|
||
|
if self.model.endswith("001"):
|
||
|
# See: https://github.com/openai/openai-python/
|
||
|
# issues/418#issuecomment-1525939500
|
||
|
# replace newlines, which can negatively affect performance.
|
||
|
text = text.replace("\n", " ")
|
||
|
|
||
|
token = encoding.encode(
|
||
|
text=text,
|
||
|
allowed_special=self.allowed_special,
|
||
|
disallowed_special=self.disallowed_special,
|
||
|
)
|
||
|
|
||
|
# Split tokens into chunks respecting the embedding_ctx_length
|
||
|
for j in range(0, len(token), self.embedding_ctx_length):
|
||
|
tokens.append(token[j : j + self.embedding_ctx_length])
|
||
|
indices.append(i)
|
||
|
|
||
|
if self.show_progress_bar:
|
||
|
try:
|
||
|
from tqdm.auto import tqdm
|
||
|
|
||
|
_iter: Iterable = tqdm(range(0, len(tokens), _chunk_size))
|
||
|
except ImportError:
|
||
|
_iter = range(0, len(tokens), _chunk_size)
|
||
|
else:
|
||
|
_iter = range(0, len(tokens), _chunk_size)
|
||
|
|
||
|
batched_embeddings: List[List[float]] = []
|
||
|
for i in _iter:
|
||
|
response = self.client.create(
|
||
|
input=tokens[i : i + _chunk_size], **self._invocation_params
|
||
|
)
|
||
|
if not isinstance(response, dict):
|
||
|
response = response.dict()
|
||
|
batched_embeddings.extend(r["embedding"] for r in response["data"])
|
||
|
|
||
|
results: List[List[List[float]]] = [[] for _ in range(len(texts))]
|
||
|
num_tokens_in_batch: List[List[int]] = [[] for _ in range(len(texts))]
|
||
|
for i in range(len(indices)):
|
||
|
if self.skip_empty and len(batched_embeddings[i]) == 1:
|
||
|
continue
|
||
|
results[indices[i]].append(batched_embeddings[i])
|
||
|
num_tokens_in_batch[indices[i]].append(len(tokens[i]))
|
||
|
|
||
|
embeddings: List[List[float]] = [[] for _ in range(len(texts))]
|
||
|
for i in range(len(texts)):
|
||
|
_result = results[i]
|
||
|
if len(_result) == 0:
|
||
|
average_embedded = self.client.create(
|
||
|
input="", **self._invocation_params
|
||
|
)
|
||
|
if not isinstance(average_embedded, dict):
|
||
|
average_embedded = average_embedded.dict()
|
||
|
average = average_embedded["data"][0]["embedding"]
|
||
|
else:
|
||
|
average = np.average(_result, axis=0, weights=num_tokens_in_batch[i])
|
||
|
embeddings[i] = (average / np.linalg.norm(average)).tolist()
|
||
|
|
||
|
return embeddings
|
||
|
|
||
|
# please refer to
|
||
|
# https://github.com/openai/openai-cookbook/blob/main/examples/Embedding_long_inputs.ipynb
|
||
|
async def _aget_len_safe_embeddings(
|
||
|
self, texts: List[str], *, engine: str, chunk_size: Optional[int] = None
|
||
|
) -> List[List[float]]:
|
||
|
"""
|
||
|
Asynchronously generate length-safe embeddings for a list of texts.
|
||
|
|
||
|
This method handles tokenization and asynchronous embedding generation,
|
||
|
respecting the set embedding context length and chunk size. It supports both
|
||
|
`tiktoken` and HuggingFace `tokenizer` based on the tiktoken_enabled flag.
|
||
|
|
||
|
Args:
|
||
|
texts (List[str]): A list of texts to embed.
|
||
|
engine (str): The engine or model to use for embeddings.
|
||
|
chunk_size (Optional[int]): The size of chunks for processing embeddings.
|
||
|
|
||
|
Returns:
|
||
|
List[List[float]]: A list of embeddings for each input text.
|
||
|
"""
|
||
|
|
||
|
tokens = []
|
||
|
indices = []
|
||
|
model_name = self.tiktoken_model_name or self.model
|
||
|
_chunk_size = chunk_size or self.chunk_size
|
||
|
|
||
|
# If tiktoken flag set to False
|
||
|
if not self.tiktoken_enabled:
|
||
|
try:
|
||
|
from transformers import AutoTokenizer
|
||
|
except ImportError:
|
||
|
raise ValueError(
|
||
|
"Could not import transformers python package. "
|
||
|
"This is needed in order to for OpenAIEmbeddings without "
|
||
|
" `tiktoken`. Please install it with `pip install transformers`."
|
||
|
)
|
||
|
|
||
|
tokenizer = AutoTokenizer.from_pretrained(
|
||
|
pretrained_model_name_or_path=model_name
|
||
|
)
|
||
|
for i, text in enumerate(texts):
|
||
|
# Tokenize the text using HuggingFace transformers
|
||
|
tokenized = tokenizer.encode(text, add_special_tokens=False)
|
||
|
|
||
|
# Split tokens into chunks respecting the embedding_ctx_length
|
||
|
for j in range(0, len(tokenized), self.embedding_ctx_length):
|
||
|
token_chunk = tokenized[j : j + self.embedding_ctx_length]
|
||
|
|
||
|
# Convert token IDs back to a string
|
||
|
chunk_text = tokenizer.decode(token_chunk)
|
||
|
tokens.append(chunk_text)
|
||
|
indices.append(i)
|
||
|
else:
|
||
|
try:
|
||
|
encoding = tiktoken.encoding_for_model(model_name)
|
||
|
except KeyError:
|
||
|
logger.warning("Warning: model not found. Using cl100k_base encoding.")
|
||
|
model = "cl100k_base"
|
||
|
encoding = tiktoken.get_encoding(model)
|
||
|
for i, text in enumerate(texts):
|
||
|
if self.model.endswith("001"):
|
||
|
# See: https://github.com/openai/openai-python/
|
||
|
# issues/418#issuecomment-1525939500
|
||
|
# replace newlines, which can negatively affect performance.
|
||
|
text = text.replace("\n", " ")
|
||
|
|
||
|
token = encoding.encode(
|
||
|
text=text,
|
||
|
allowed_special=self.allowed_special,
|
||
|
disallowed_special=self.disallowed_special,
|
||
|
)
|
||
|
|
||
|
# Split tokens into chunks respecting the embedding_ctx_length
|
||
|
for j in range(0, len(token), self.embedding_ctx_length):
|
||
|
tokens.append(token[j : j + self.embedding_ctx_length])
|
||
|
indices.append(i)
|
||
|
|
||
|
batched_embeddings: List[List[float]] = []
|
||
|
_chunk_size = chunk_size or self.chunk_size
|
||
|
for i in range(0, len(tokens), _chunk_size):
|
||
|
response = await self.async_client.create(
|
||
|
input=tokens[i : i + _chunk_size], **self._invocation_params
|
||
|
)
|
||
|
|
||
|
if not isinstance(response, dict):
|
||
|
response = response.dict()
|
||
|
batched_embeddings.extend(r["embedding"] for r in response["data"])
|
||
|
|
||
|
results: List[List[List[float]]] = [[] for _ in range(len(texts))]
|
||
|
num_tokens_in_batch: List[List[int]] = [[] for _ in range(len(texts))]
|
||
|
for i in range(len(indices)):
|
||
|
results[indices[i]].append(batched_embeddings[i])
|
||
|
num_tokens_in_batch[indices[i]].append(len(tokens[i]))
|
||
|
|
||
|
embeddings: List[List[float]] = [[] for _ in range(len(texts))]
|
||
|
for i in range(len(texts)):
|
||
|
_result = results[i]
|
||
|
if len(_result) == 0:
|
||
|
average_embedded = await self.async_client.create(
|
||
|
input="", **self._invocation_params
|
||
|
)
|
||
|
if not isinstance(average_embedded, dict):
|
||
|
average_embedded = average_embedded.dict()
|
||
|
average = average_embedded["data"][0]["embedding"]
|
||
|
else:
|
||
|
average = np.average(_result, axis=0, weights=num_tokens_in_batch[i])
|
||
|
embeddings[i] = (average / np.linalg.norm(average)).tolist()
|
||
|
|
||
|
return embeddings
|
||
|
|
||
|
def embed_documents(
|
||
|
self, texts: List[str], chunk_size: Optional[int] = 0
|
||
|
) -> List[List[float]]:
|
||
|
"""Call out to OpenAI's embedding endpoint for embedding search docs.
|
||
|
|
||
|
Args:
|
||
|
texts: The list of texts to embed.
|
||
|
chunk_size: The chunk size of embeddings. If None, will use the chunk size
|
||
|
specified by the class.
|
||
|
|
||
|
Returns:
|
||
|
List of embeddings, one for each text.
|
||
|
"""
|
||
|
# NOTE: to keep things simple, we assume the list may contain texts longer
|
||
|
# than the maximum context and use length-safe embedding function.
|
||
|
engine = cast(str, self.deployment)
|
||
|
return self._get_len_safe_embeddings(texts, engine=engine)
|
||
|
|
||
|
async def aembed_documents(
|
||
|
self, texts: List[str], chunk_size: Optional[int] = 0
|
||
|
) -> List[List[float]]:
|
||
|
"""Call out to OpenAI's embedding endpoint async for embedding search docs.
|
||
|
|
||
|
Args:
|
||
|
texts: The list of texts to embed.
|
||
|
chunk_size: The chunk size of embeddings. If None, will use the chunk size
|
||
|
specified by the class.
|
||
|
|
||
|
Returns:
|
||
|
List of embeddings, one for each text.
|
||
|
"""
|
||
|
# NOTE: to keep things simple, we assume the list may contain texts longer
|
||
|
# than the maximum context and use length-safe embedding function.
|
||
|
engine = cast(str, self.deployment)
|
||
|
return await self._aget_len_safe_embeddings(texts, engine=engine)
|
||
|
|
||
|
def embed_query(self, text: str) -> List[float]:
|
||
|
"""Call out to OpenAI's embedding endpoint for embedding query text.
|
||
|
|
||
|
Args:
|
||
|
text: The text to embed.
|
||
|
|
||
|
Returns:
|
||
|
Embedding for the text.
|
||
|
"""
|
||
|
return self.embed_documents([text])[0]
|
||
|
|
||
|
async def aembed_query(self, text: str) -> List[float]:
|
||
|
"""Call out to OpenAI's embedding endpoint async for embedding query text.
|
||
|
|
||
|
Args:
|
||
|
text: The text to embed.
|
||
|
|
||
|
Returns:
|
||
|
Embedding for the text.
|
||
|
"""
|
||
|
embeddings = await self.aembed_documents([text])
|
||
|
return embeddings[0]
|