mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
103 lines
3.7 KiB
Python
103 lines
3.7 KiB
Python
|
from typing import Any, Callable, List
|
||
|
|
||
|
from langchain_core.embeddings import Embeddings
|
||
|
from langchain_core.pydantic_v1 import Extra
|
||
|
|
||
|
from langchain_community.llms.self_hosted import SelfHostedPipeline
|
||
|
|
||
|
|
||
|
def _embed_documents(pipeline: Any, *args: Any, **kwargs: Any) -> List[List[float]]:
|
||
|
"""Inference function to send to the remote hardware.
|
||
|
|
||
|
Accepts a sentence_transformer model_id and
|
||
|
returns a list of embeddings for each document in the batch.
|
||
|
"""
|
||
|
return pipeline(*args, **kwargs)
|
||
|
|
||
|
|
||
|
class SelfHostedEmbeddings(SelfHostedPipeline, Embeddings):
|
||
|
"""Custom embedding models on self-hosted remote hardware.
|
||
|
|
||
|
Supported hardware includes auto-launched instances on AWS, GCP, Azure,
|
||
|
and Lambda, as well as servers specified
|
||
|
by IP address and SSH credentials (such as on-prem, or another
|
||
|
cloud like Paperspace, Coreweave, etc.).
|
||
|
|
||
|
To use, you should have the ``runhouse`` python package installed.
|
||
|
|
||
|
Example using a model load function:
|
||
|
.. code-block:: python
|
||
|
|
||
|
from langchain_community.embeddings import SelfHostedEmbeddings
|
||
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
||
|
import runhouse as rh
|
||
|
|
||
|
gpu = rh.cluster(name="rh-a10x", instance_type="A100:1")
|
||
|
def get_pipeline():
|
||
|
model_id = "facebook/bart-large"
|
||
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
||
|
model = AutoModelForCausalLM.from_pretrained(model_id)
|
||
|
return pipeline("feature-extraction", model=model, tokenizer=tokenizer)
|
||
|
embeddings = SelfHostedEmbeddings(
|
||
|
model_load_fn=get_pipeline,
|
||
|
hardware=gpu
|
||
|
model_reqs=["./", "torch", "transformers"],
|
||
|
)
|
||
|
Example passing in a pipeline path:
|
||
|
.. code-block:: python
|
||
|
|
||
|
from langchain_community.embeddings import SelfHostedHFEmbeddings
|
||
|
import runhouse as rh
|
||
|
from transformers import pipeline
|
||
|
|
||
|
gpu = rh.cluster(name="rh-a10x", instance_type="A100:1")
|
||
|
pipeline = pipeline(model="bert-base-uncased", task="feature-extraction")
|
||
|
rh.blob(pickle.dumps(pipeline),
|
||
|
path="models/pipeline.pkl").save().to(gpu, path="models")
|
||
|
embeddings = SelfHostedHFEmbeddings.from_pipeline(
|
||
|
pipeline="models/pipeline.pkl",
|
||
|
hardware=gpu,
|
||
|
model_reqs=["./", "torch", "transformers"],
|
||
|
)
|
||
|
"""
|
||
|
|
||
|
inference_fn: Callable = _embed_documents
|
||
|
"""Inference function to extract the embeddings on the remote hardware."""
|
||
|
inference_kwargs: Any = None
|
||
|
"""Any kwargs to pass to the model's inference function."""
|
||
|
|
||
|
class Config:
|
||
|
"""Configuration for this pydantic object."""
|
||
|
|
||
|
extra = Extra.forbid
|
||
|
|
||
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||
|
"""Compute doc embeddings using a HuggingFace transformer model.
|
||
|
|
||
|
Args:
|
||
|
texts: The list of texts to embed.s
|
||
|
|
||
|
Returns:
|
||
|
List of embeddings, one for each text.
|
||
|
"""
|
||
|
texts = list(map(lambda x: x.replace("\n", " "), texts))
|
||
|
embeddings = self.client(self.pipeline_ref, texts)
|
||
|
if not isinstance(embeddings, list):
|
||
|
return embeddings.tolist()
|
||
|
return embeddings
|
||
|
|
||
|
def embed_query(self, text: str) -> List[float]:
|
||
|
"""Compute query embeddings using a HuggingFace transformer model.
|
||
|
|
||
|
Args:
|
||
|
text: The text to embed.
|
||
|
|
||
|
Returns:
|
||
|
Embeddings for the text.
|
||
|
"""
|
||
|
text = text.replace("\n", " ")
|
||
|
embeddings = self.client(self.pipeline_ref, text)
|
||
|
if not isinstance(embeddings, list):
|
||
|
return embeddings.tolist()
|
||
|
return embeddings
|