langchain/libs/community/langchain_community/callbacks/infino_callback.py

267 lines
9.0 KiB
Python
Raw Normal View History

community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463) Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
2023-12-11 21:53:30 +00:00
import time
from typing import Any, Dict, List, Optional, cast
from langchain_core.agents import AgentAction, AgentFinish
from langchain_core.callbacks import BaseCallbackHandler
from langchain_core.messages import BaseMessage
from langchain_core.outputs import LLMResult
def import_infino() -> Any:
"""Import the infino client."""
try:
from infinopy import InfinoClient
except ImportError:
raise ImportError(
"To use the Infino callbacks manager you need to have the"
" `infinopy` python package installed."
"Please install it with `pip install infinopy`"
)
return InfinoClient()
def import_tiktoken() -> Any:
"""Import tiktoken for counting tokens for OpenAI models."""
try:
import tiktoken
except ImportError:
raise ImportError(
"To use the ChatOpenAI model with Infino callback manager, you need to "
"have the `tiktoken` python package installed."
"Please install it with `pip install tiktoken`"
)
return tiktoken
def get_num_tokens(string: str, openai_model_name: str) -> int:
"""Calculate num tokens for OpenAI with tiktoken package.
Official documentation: https://github.com/openai/openai-cookbook/blob/main
/examples/How_to_count_tokens_with_tiktoken.ipynb
"""
tiktoken = import_tiktoken()
encoding = tiktoken.encoding_for_model(openai_model_name)
num_tokens = len(encoding.encode(string))
return num_tokens
class InfinoCallbackHandler(BaseCallbackHandler):
"""Callback Handler that logs to Infino."""
def __init__(
self,
model_id: Optional[str] = None,
model_version: Optional[str] = None,
verbose: bool = False,
) -> None:
# Set Infino client
self.client = import_infino()
self.model_id = model_id
self.model_version = model_version
self.verbose = verbose
self.is_chat_openai_model = False
self.chat_openai_model_name = "gpt-3.5-turbo"
def _send_to_infino(
self,
key: str,
value: Any,
is_ts: bool = True,
) -> None:
"""Send the key-value to Infino.
Parameters:
key (str): the key to send to Infino.
value (Any): the value to send to Infino.
is_ts (bool): if True, the value is part of a time series, else it
is sent as a log message.
"""
payload = {
"date": int(time.time()),
key: value,
"labels": {
"model_id": self.model_id,
"model_version": self.model_version,
},
}
if self.verbose:
print(f"Tracking {key} with Infino: {payload}")
# Append to Infino time series only if is_ts is True, otherwise
# append to Infino log.
if is_ts:
self.client.append_ts(payload)
else:
self.client.append_log(payload)
def on_llm_start(
self,
serialized: Dict[str, Any],
prompts: List[str],
**kwargs: Any,
) -> None:
"""Log the prompts to Infino, and set start time and error flag."""
for prompt in prompts:
self._send_to_infino("prompt", prompt, is_ts=False)
# Set the error flag to indicate no error (this will get overridden
# in on_llm_error if an error occurs).
self.error = 0
# Set the start time (so that we can calculate the request
# duration in on_llm_end).
self.start_time = time.time()
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
"""Do nothing when a new token is generated."""
pass
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
"""Log the latency, error, token usage, and response to Infino."""
# Calculate and track the request latency.
self.end_time = time.time()
duration = self.end_time - self.start_time
self._send_to_infino("latency", duration)
# Track success or error flag.
self._send_to_infino("error", self.error)
# Track prompt response.
for generations in response.generations:
for generation in generations:
self._send_to_infino("prompt_response", generation.text, is_ts=False)
# Track token usage (for non-chat models).
if (response.llm_output is not None) and isinstance(response.llm_output, Dict):
token_usage = response.llm_output["token_usage"]
if token_usage is not None:
prompt_tokens = token_usage["prompt_tokens"]
total_tokens = token_usage["total_tokens"]
completion_tokens = token_usage["completion_tokens"]
self._send_to_infino("prompt_tokens", prompt_tokens)
self._send_to_infino("total_tokens", total_tokens)
self._send_to_infino("completion_tokens", completion_tokens)
# Track completion token usage (for openai chat models).
if self.is_chat_openai_model:
messages = " ".join(
generation.message.content # type: ignore[attr-defined]
for generation in generations
)
completion_tokens = get_num_tokens(
messages, openai_model_name=self.chat_openai_model_name
)
self._send_to_infino("completion_tokens", completion_tokens)
def on_llm_error(self, error: BaseException, **kwargs: Any) -> None:
"""Set the error flag."""
self.error = 1
def on_chain_start(
self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
) -> None:
"""Do nothing when LLM chain starts."""
pass
def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
"""Do nothing when LLM chain ends."""
pass
def on_chain_error(self, error: BaseException, **kwargs: Any) -> None:
"""Need to log the error."""
pass
def on_tool_start(
self,
serialized: Dict[str, Any],
input_str: str,
**kwargs: Any,
) -> None:
"""Do nothing when tool starts."""
pass
def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:
"""Do nothing when agent takes a specific action."""
pass
def on_tool_end(
self,
output: str,
observation_prefix: Optional[str] = None,
llm_prefix: Optional[str] = None,
**kwargs: Any,
) -> None:
"""Do nothing when tool ends."""
pass
def on_tool_error(self, error: BaseException, **kwargs: Any) -> None:
"""Do nothing when tool outputs an error."""
pass
def on_text(self, text: str, **kwargs: Any) -> None:
"""Do nothing."""
pass
def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None:
"""Do nothing."""
pass
def on_chat_model_start(
self,
serialized: Dict[str, Any],
messages: List[List[BaseMessage]],
**kwargs: Any,
) -> None:
"""Run when LLM starts running."""
# Currently, for chat models, we only support input prompts for ChatOpenAI.
# Check if this model is a ChatOpenAI model.
values = serialized.get("id")
if values:
for value in values:
if value == "ChatOpenAI":
self.is_chat_openai_model = True
break
# Track prompt tokens for ChatOpenAI model.
if self.is_chat_openai_model:
invocation_params = kwargs.get("invocation_params")
if invocation_params:
model_name = invocation_params.get("model_name")
if model_name:
self.chat_openai_model_name = model_name
prompt_tokens = 0
for message_list in messages:
message_string = " ".join(
cast(str, msg.content) for msg in message_list
)
num_tokens = get_num_tokens(
message_string,
openai_model_name=self.chat_openai_model_name,
)
prompt_tokens += num_tokens
self._send_to_infino("prompt_tokens", prompt_tokens)
if self.verbose:
print(
f"on_chat_model_start: is_chat_openai_model= \
{self.is_chat_openai_model}, \
chat_openai_model_name={self.chat_openai_model_name}"
)
# Send the prompt to infino
prompt = " ".join(
cast(str, msg.content) for sublist in messages for msg in sublist
)
self._send_to_infino("prompt", prompt, is_ts=False)
# Set the error flag to indicate no error (this will get overridden
# in on_llm_error if an error occurs).
self.error = 0
# Set the start time (so that we can calculate the request
# duration in on_llm_end).
self.start_time = time.time()