langchain/docs/extras/modules/data_connection/retrievers/integrations/docarray_retriever.ipynb

792 lines
24 KiB
Plaintext
Raw Normal View History

DocArray as a Retriever (#6031) ## DocArray as a Retriever [DocArray](https://github.com/docarray/docarray) is an open-source tool for managing your multi-modal data. It offers flexibility to store and search through your data using various document index backends. This PR introduces `DocArrayRetriever` - which works with any available backend and serves as a retriever for Langchain apps. Also, I added 2 notebooks: DocArray Backends - intro to all 5 currently supported backends, how to initialize, index, and use them as a retriever DocArray Usage - showcasing what additional search parameters you can pass to create versatile retrievers Example: ```python from docarray.index import InMemoryExactNNIndex from docarray import BaseDoc, DocList from docarray.typing import NdArray from langchain.embeddings.openai import OpenAIEmbeddings from langchain.retrievers import DocArrayRetriever # define document schema class MyDoc(BaseDoc): description: str description_embedding: NdArray[1536] embeddings = OpenAIEmbeddings() # create documents descriptions = ["description 1", "description 2"] desc_embeddings = embeddings.embed_documents(texts=descriptions) docs = DocList[MyDoc]( [ MyDoc(description=desc, description_embedding=embedding) for desc, embedding in zip(descriptions, desc_embeddings) ] ) # initialize document index with data db = InMemoryExactNNIndex[MyDoc](docs) # create a retriever retriever = DocArrayRetriever( index=db, embeddings=embeddings, search_field="description_embedding", content_field="description", ) # find the relevant document doc = retriever.get_relevant_documents("action movies") print(doc) ``` #### Who can review? @dev2049 --------- Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
2023-06-17 16:09:33 +00:00
{
"cells": [
{
"cell_type": "markdown",
"id": "a0eb506a-f52e-4a92-9204-63233c3eb5bd",
"metadata": {},
"source": [
"# DocArray Retriever\n",
"\n",
"[DocArray](https://github.com/docarray/docarray) is a versatile, open-source tool for managing your multi-modal data. It lets you shape your data however you want, and offers the flexibility to store and search it using various document index backends. Plus, it gets even better - you can utilize your DocArray document index to create a DocArrayRetriever, and build awesome Langchain apps!\n",
"\n",
"This notebook is split into two sections. The first section offers an introduction to all five supported document index backends. It provides guidance on setting up and indexing each backend, and also instructs you on how to build a DocArrayRetriever for finding relevant documents. In the second section, we'll select one of these backends and illustrate how to use it through a basic example.\n",
"\n",
"\n",
"[Document Index Backends](#Document-Index-Backends)\n",
"1. [InMemoryExactNNIndex](#inmemoryexactnnindex)\n",
"2. [HnswDocumentIndex](#hnswdocumentindex)\n",
"3. [WeaviateDocumentIndex](#weaviatedocumentindex)\n",
"4. [ElasticDocIndex](#elasticdocindex)\n",
"5. [QdrantDocumentIndex](#qdrantdocumentindex)\n",
"\n",
"[Movie Retrieval using HnswDocumentIndex](#Movie-Retrieval-using-HnswDocumentIndex)\n",
"\n",
"- [Normal Retriever](#normal-retriever)\n",
"- [Retriever with Filters](#retriever-with-filters)\n",
"- [Retriever with MMR Search](#Retriever-with-MMR-search)\n"
]
},
{
"cell_type": "markdown",
"id": "51db6285-58db-481d-8d24-b13d1888056b",
"metadata": {},
"source": [
"# Document Index Backends"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "b72a4512-6318-4572-adf2-12b06b2d2e72",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.retrievers import DocArrayRetriever\n",
"from docarray import BaseDoc\n",
"from docarray.typing import NdArray\n",
"import numpy as np\n",
"from langchain.embeddings import FakeEmbeddings\n",
"import random\n",
"\n",
"embeddings = FakeEmbeddings(size=32)"
]
},
{
"cell_type": "markdown",
"id": "bdac41b4-67a1-483f-b3d6-fe662b7bdacd",
"metadata": {},
"source": [
"Before you start building the index, it's important to define your document schema. This determines what fields your documents will have and what type of data each field will hold.\n",
"\n",
"For this demonstration, we'll create a somewhat random schema containing 'title' (str), 'title_embedding' (numpy array), 'year' (int), and 'color' (str)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "8a97c56a-63a0-405c-929f-35e1ded79489",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"class MyDoc(BaseDoc):\n",
" title: str\n",
" title_embedding: NdArray[32]\n",
" year: int\n",
" color: str"
]
},
{
"cell_type": "markdown",
"id": "297bfdb5-6bfe-47ce-90e7-feefc4c160b7",
"metadata": {
"tags": []
},
"source": [
"## InMemoryExactNNIndex\n",
"\n",
"InMemoryExactNNIndex stores all Documentsin memory. It is a great starting point for small datasets, where you may not want to launch a database server.\n",
"\n",
"Learn more here: https://docs.docarray.org/user_guide/storing/index_in_memory/"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "8b6e6343-88c2-4206-92fd-5a634d39da09",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from docarray.index import InMemoryExactNNIndex\n",
"\n",
"\n",
"# initialize the index\n",
"db = InMemoryExactNNIndex[MyDoc]()\n",
"# index data\n",
"db.index(\n",
" [\n",
" MyDoc(\n",
Fix `make docs_build` and related scripts (#7276) **Description: a description of the change** Fixed `make docs_build` and related scripts which caused errors. There are several changes. First, I made the build of the documentation and the API Reference into two separate commands. This is because it takes less time to build. The commands for documents are `make docs_build`, `make docs_clean`, and `make docs_linkcheck`. The commands for API Reference are `make api_docs_build`, `api_docs_clean`, and `api_docs_linkcheck`. It looked like `docs/.local_build.sh` could be used to build the documentation, so I used that. Since `.local_build.sh` was also building API Rerefence internally, I removed that process. `.local_build.sh` also added some Bash options to stop in error or so. Futher more added `cd "${SCRIPT_DIR}"` at the beginning so that the script will work no matter which directory it is executed in. `docs/api_reference/api_reference.rst` is removed, because which is generated by `docs/api_reference/create_api_rst.py`, and added it to .gitignore. Finally, the description of CONTRIBUTING.md was modified. **Issue: the issue # it fixes (if applicable)** https://github.com/hwchase17/langchain/issues/6413 **Dependencies: any dependencies required for this change** `nbdoc` was missing in group docs so it was added. I installed it with the `poetry add --group docs nbdoc` command. I am concerned if any modifications are needed to poetry.lock. I would greatly appreciate it if you could pay close attention to this file during the review. **Tag maintainer** - General / Misc / if you don't know who to tag: @baskaryan If this PR needs any additional changes, I'll be happy to make them! --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 02:05:14 +00:00
" title=f\"My document {i}\",\n",
" title_embedding=embeddings.embed_query(f\"query {i}\"),\n",
DocArray as a Retriever (#6031) ## DocArray as a Retriever [DocArray](https://github.com/docarray/docarray) is an open-source tool for managing your multi-modal data. It offers flexibility to store and search through your data using various document index backends. This PR introduces `DocArrayRetriever` - which works with any available backend and serves as a retriever for Langchain apps. Also, I added 2 notebooks: DocArray Backends - intro to all 5 currently supported backends, how to initialize, index, and use them as a retriever DocArray Usage - showcasing what additional search parameters you can pass to create versatile retrievers Example: ```python from docarray.index import InMemoryExactNNIndex from docarray import BaseDoc, DocList from docarray.typing import NdArray from langchain.embeddings.openai import OpenAIEmbeddings from langchain.retrievers import DocArrayRetriever # define document schema class MyDoc(BaseDoc): description: str description_embedding: NdArray[1536] embeddings = OpenAIEmbeddings() # create documents descriptions = ["description 1", "description 2"] desc_embeddings = embeddings.embed_documents(texts=descriptions) docs = DocList[MyDoc]( [ MyDoc(description=desc, description_embedding=embedding) for desc, embedding in zip(descriptions, desc_embeddings) ] ) # initialize document index with data db = InMemoryExactNNIndex[MyDoc](docs) # create a retriever retriever = DocArrayRetriever( index=db, embeddings=embeddings, search_field="description_embedding", content_field="description", ) # find the relevant document doc = retriever.get_relevant_documents("action movies") print(doc) ``` #### Who can review? @dev2049 --------- Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
2023-06-17 16:09:33 +00:00
" year=i,\n",
Fix `make docs_build` and related scripts (#7276) **Description: a description of the change** Fixed `make docs_build` and related scripts which caused errors. There are several changes. First, I made the build of the documentation and the API Reference into two separate commands. This is because it takes less time to build. The commands for documents are `make docs_build`, `make docs_clean`, and `make docs_linkcheck`. The commands for API Reference are `make api_docs_build`, `api_docs_clean`, and `api_docs_linkcheck`. It looked like `docs/.local_build.sh` could be used to build the documentation, so I used that. Since `.local_build.sh` was also building API Rerefence internally, I removed that process. `.local_build.sh` also added some Bash options to stop in error or so. Futher more added `cd "${SCRIPT_DIR}"` at the beginning so that the script will work no matter which directory it is executed in. `docs/api_reference/api_reference.rst` is removed, because which is generated by `docs/api_reference/create_api_rst.py`, and added it to .gitignore. Finally, the description of CONTRIBUTING.md was modified. **Issue: the issue # it fixes (if applicable)** https://github.com/hwchase17/langchain/issues/6413 **Dependencies: any dependencies required for this change** `nbdoc` was missing in group docs so it was added. I installed it with the `poetry add --group docs nbdoc` command. I am concerned if any modifications are needed to poetry.lock. I would greatly appreciate it if you could pay close attention to this file during the review. **Tag maintainer** - General / Misc / if you don't know who to tag: @baskaryan If this PR needs any additional changes, I'll be happy to make them! --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 02:05:14 +00:00
" color=random.choice([\"red\", \"green\", \"blue\"]),\n",
DocArray as a Retriever (#6031) ## DocArray as a Retriever [DocArray](https://github.com/docarray/docarray) is an open-source tool for managing your multi-modal data. It offers flexibility to store and search through your data using various document index backends. This PR introduces `DocArrayRetriever` - which works with any available backend and serves as a retriever for Langchain apps. Also, I added 2 notebooks: DocArray Backends - intro to all 5 currently supported backends, how to initialize, index, and use them as a retriever DocArray Usage - showcasing what additional search parameters you can pass to create versatile retrievers Example: ```python from docarray.index import InMemoryExactNNIndex from docarray import BaseDoc, DocList from docarray.typing import NdArray from langchain.embeddings.openai import OpenAIEmbeddings from langchain.retrievers import DocArrayRetriever # define document schema class MyDoc(BaseDoc): description: str description_embedding: NdArray[1536] embeddings = OpenAIEmbeddings() # create documents descriptions = ["description 1", "description 2"] desc_embeddings = embeddings.embed_documents(texts=descriptions) docs = DocList[MyDoc]( [ MyDoc(description=desc, description_embedding=embedding) for desc, embedding in zip(descriptions, desc_embeddings) ] ) # initialize document index with data db = InMemoryExactNNIndex[MyDoc](docs) # create a retriever retriever = DocArrayRetriever( index=db, embeddings=embeddings, search_field="description_embedding", content_field="description", ) # find the relevant document doc = retriever.get_relevant_documents("action movies") print(doc) ``` #### Who can review? @dev2049 --------- Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
2023-06-17 16:09:33 +00:00
" )\n",
" for i in range(100)\n",
" ]\n",
")\n",
"# optionally, you can create a filter query\n",
"filter_query = {\"year\": {\"$lte\": 90}}"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "142060e5-3e0c-4fa2-9f69-8c91f53617f4",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[Document(page_content='My document 56', metadata={'id': '1f33e58b6468ab722f3786b96b20afe6', 'year': 56, 'color': 'red'})]\n"
]
}
],
"source": [
"# create a retriever\n",
"retriever = DocArrayRetriever(\n",
Fix `make docs_build` and related scripts (#7276) **Description: a description of the change** Fixed `make docs_build` and related scripts which caused errors. There are several changes. First, I made the build of the documentation and the API Reference into two separate commands. This is because it takes less time to build. The commands for documents are `make docs_build`, `make docs_clean`, and `make docs_linkcheck`. The commands for API Reference are `make api_docs_build`, `api_docs_clean`, and `api_docs_linkcheck`. It looked like `docs/.local_build.sh` could be used to build the documentation, so I used that. Since `.local_build.sh` was also building API Rerefence internally, I removed that process. `.local_build.sh` also added some Bash options to stop in error or so. Futher more added `cd "${SCRIPT_DIR}"` at the beginning so that the script will work no matter which directory it is executed in. `docs/api_reference/api_reference.rst` is removed, because which is generated by `docs/api_reference/create_api_rst.py`, and added it to .gitignore. Finally, the description of CONTRIBUTING.md was modified. **Issue: the issue # it fixes (if applicable)** https://github.com/hwchase17/langchain/issues/6413 **Dependencies: any dependencies required for this change** `nbdoc` was missing in group docs so it was added. I installed it with the `poetry add --group docs nbdoc` command. I am concerned if any modifications are needed to poetry.lock. I would greatly appreciate it if you could pay close attention to this file during the review. **Tag maintainer** - General / Misc / if you don't know who to tag: @baskaryan If this PR needs any additional changes, I'll be happy to make them! --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 02:05:14 +00:00
" index=db,\n",
" embeddings=embeddings,\n",
" search_field=\"title_embedding\",\n",
" content_field=\"title\",\n",
DocArray as a Retriever (#6031) ## DocArray as a Retriever [DocArray](https://github.com/docarray/docarray) is an open-source tool for managing your multi-modal data. It offers flexibility to store and search through your data using various document index backends. This PR introduces `DocArrayRetriever` - which works with any available backend and serves as a retriever for Langchain apps. Also, I added 2 notebooks: DocArray Backends - intro to all 5 currently supported backends, how to initialize, index, and use them as a retriever DocArray Usage - showcasing what additional search parameters you can pass to create versatile retrievers Example: ```python from docarray.index import InMemoryExactNNIndex from docarray import BaseDoc, DocList from docarray.typing import NdArray from langchain.embeddings.openai import OpenAIEmbeddings from langchain.retrievers import DocArrayRetriever # define document schema class MyDoc(BaseDoc): description: str description_embedding: NdArray[1536] embeddings = OpenAIEmbeddings() # create documents descriptions = ["description 1", "description 2"] desc_embeddings = embeddings.embed_documents(texts=descriptions) docs = DocList[MyDoc]( [ MyDoc(description=desc, description_embedding=embedding) for desc, embedding in zip(descriptions, desc_embeddings) ] ) # initialize document index with data db = InMemoryExactNNIndex[MyDoc](docs) # create a retriever retriever = DocArrayRetriever( index=db, embeddings=embeddings, search_field="description_embedding", content_field="description", ) # find the relevant document doc = retriever.get_relevant_documents("action movies") print(doc) ``` #### Who can review? @dev2049 --------- Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
2023-06-17 16:09:33 +00:00
" filters=filter_query,\n",
")\n",
"\n",
"# find the relevant document\n",
Fix `make docs_build` and related scripts (#7276) **Description: a description of the change** Fixed `make docs_build` and related scripts which caused errors. There are several changes. First, I made the build of the documentation and the API Reference into two separate commands. This is because it takes less time to build. The commands for documents are `make docs_build`, `make docs_clean`, and `make docs_linkcheck`. The commands for API Reference are `make api_docs_build`, `api_docs_clean`, and `api_docs_linkcheck`. It looked like `docs/.local_build.sh` could be used to build the documentation, so I used that. Since `.local_build.sh` was also building API Rerefence internally, I removed that process. `.local_build.sh` also added some Bash options to stop in error or so. Futher more added `cd "${SCRIPT_DIR}"` at the beginning so that the script will work no matter which directory it is executed in. `docs/api_reference/api_reference.rst` is removed, because which is generated by `docs/api_reference/create_api_rst.py`, and added it to .gitignore. Finally, the description of CONTRIBUTING.md was modified. **Issue: the issue # it fixes (if applicable)** https://github.com/hwchase17/langchain/issues/6413 **Dependencies: any dependencies required for this change** `nbdoc` was missing in group docs so it was added. I installed it with the `poetry add --group docs nbdoc` command. I am concerned if any modifications are needed to poetry.lock. I would greatly appreciate it if you could pay close attention to this file during the review. **Tag maintainer** - General / Misc / if you don't know who to tag: @baskaryan If this PR needs any additional changes, I'll be happy to make them! --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 02:05:14 +00:00
"doc = retriever.get_relevant_documents(\"some query\")\n",
DocArray as a Retriever (#6031) ## DocArray as a Retriever [DocArray](https://github.com/docarray/docarray) is an open-source tool for managing your multi-modal data. It offers flexibility to store and search through your data using various document index backends. This PR introduces `DocArrayRetriever` - which works with any available backend and serves as a retriever for Langchain apps. Also, I added 2 notebooks: DocArray Backends - intro to all 5 currently supported backends, how to initialize, index, and use them as a retriever DocArray Usage - showcasing what additional search parameters you can pass to create versatile retrievers Example: ```python from docarray.index import InMemoryExactNNIndex from docarray import BaseDoc, DocList from docarray.typing import NdArray from langchain.embeddings.openai import OpenAIEmbeddings from langchain.retrievers import DocArrayRetriever # define document schema class MyDoc(BaseDoc): description: str description_embedding: NdArray[1536] embeddings = OpenAIEmbeddings() # create documents descriptions = ["description 1", "description 2"] desc_embeddings = embeddings.embed_documents(texts=descriptions) docs = DocList[MyDoc]( [ MyDoc(description=desc, description_embedding=embedding) for desc, embedding in zip(descriptions, desc_embeddings) ] ) # initialize document index with data db = InMemoryExactNNIndex[MyDoc](docs) # create a retriever retriever = DocArrayRetriever( index=db, embeddings=embeddings, search_field="description_embedding", content_field="description", ) # find the relevant document doc = retriever.get_relevant_documents("action movies") print(doc) ``` #### Who can review? @dev2049 --------- Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
2023-06-17 16:09:33 +00:00
"print(doc)"
]
},
{
"cell_type": "markdown",
"id": "a9daf2c4-6568-4a49-ba6e-21687962d2c1",
"metadata": {},
"source": [
"## HnswDocumentIndex\n",
"\n",
"HnswDocumentIndex is a lightweight Document Index implementation that runs fully locally and is best suited for small- to medium-sized datasets. It stores vectors on disk in [hnswlib](https://github.com/nmslib/hnswlib), and stores all other data in [SQLite](https://www.sqlite.org/index.html).\n",
"\n",
"Learn more here: https://docs.docarray.org/user_guide/storing/index_hnswlib/"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "e0be3c00-470f-4448-92cc-3985f5b05809",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from docarray.index import HnswDocumentIndex\n",
"\n",
"\n",
"# initialize the index\n",
Fix `make docs_build` and related scripts (#7276) **Description: a description of the change** Fixed `make docs_build` and related scripts which caused errors. There are several changes. First, I made the build of the documentation and the API Reference into two separate commands. This is because it takes less time to build. The commands for documents are `make docs_build`, `make docs_clean`, and `make docs_linkcheck`. The commands for API Reference are `make api_docs_build`, `api_docs_clean`, and `api_docs_linkcheck`. It looked like `docs/.local_build.sh` could be used to build the documentation, so I used that. Since `.local_build.sh` was also building API Rerefence internally, I removed that process. `.local_build.sh` also added some Bash options to stop in error or so. Futher more added `cd "${SCRIPT_DIR}"` at the beginning so that the script will work no matter which directory it is executed in. `docs/api_reference/api_reference.rst` is removed, because which is generated by `docs/api_reference/create_api_rst.py`, and added it to .gitignore. Finally, the description of CONTRIBUTING.md was modified. **Issue: the issue # it fixes (if applicable)** https://github.com/hwchase17/langchain/issues/6413 **Dependencies: any dependencies required for this change** `nbdoc` was missing in group docs so it was added. I installed it with the `poetry add --group docs nbdoc` command. I am concerned if any modifications are needed to poetry.lock. I would greatly appreciate it if you could pay close attention to this file during the review. **Tag maintainer** - General / Misc / if you don't know who to tag: @baskaryan If this PR needs any additional changes, I'll be happy to make them! --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 02:05:14 +00:00
"db = HnswDocumentIndex[MyDoc](work_dir=\"hnsw_index\")\n",
DocArray as a Retriever (#6031) ## DocArray as a Retriever [DocArray](https://github.com/docarray/docarray) is an open-source tool for managing your multi-modal data. It offers flexibility to store and search through your data using various document index backends. This PR introduces `DocArrayRetriever` - which works with any available backend and serves as a retriever for Langchain apps. Also, I added 2 notebooks: DocArray Backends - intro to all 5 currently supported backends, how to initialize, index, and use them as a retriever DocArray Usage - showcasing what additional search parameters you can pass to create versatile retrievers Example: ```python from docarray.index import InMemoryExactNNIndex from docarray import BaseDoc, DocList from docarray.typing import NdArray from langchain.embeddings.openai import OpenAIEmbeddings from langchain.retrievers import DocArrayRetriever # define document schema class MyDoc(BaseDoc): description: str description_embedding: NdArray[1536] embeddings = OpenAIEmbeddings() # create documents descriptions = ["description 1", "description 2"] desc_embeddings = embeddings.embed_documents(texts=descriptions) docs = DocList[MyDoc]( [ MyDoc(description=desc, description_embedding=embedding) for desc, embedding in zip(descriptions, desc_embeddings) ] ) # initialize document index with data db = InMemoryExactNNIndex[MyDoc](docs) # create a retriever retriever = DocArrayRetriever( index=db, embeddings=embeddings, search_field="description_embedding", content_field="description", ) # find the relevant document doc = retriever.get_relevant_documents("action movies") print(doc) ``` #### Who can review? @dev2049 --------- Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
2023-06-17 16:09:33 +00:00
"\n",
"# index data\n",
"db.index(\n",
" [\n",
" MyDoc(\n",
Fix `make docs_build` and related scripts (#7276) **Description: a description of the change** Fixed `make docs_build` and related scripts which caused errors. There are several changes. First, I made the build of the documentation and the API Reference into two separate commands. This is because it takes less time to build. The commands for documents are `make docs_build`, `make docs_clean`, and `make docs_linkcheck`. The commands for API Reference are `make api_docs_build`, `api_docs_clean`, and `api_docs_linkcheck`. It looked like `docs/.local_build.sh` could be used to build the documentation, so I used that. Since `.local_build.sh` was also building API Rerefence internally, I removed that process. `.local_build.sh` also added some Bash options to stop in error or so. Futher more added `cd "${SCRIPT_DIR}"` at the beginning so that the script will work no matter which directory it is executed in. `docs/api_reference/api_reference.rst` is removed, because which is generated by `docs/api_reference/create_api_rst.py`, and added it to .gitignore. Finally, the description of CONTRIBUTING.md was modified. **Issue: the issue # it fixes (if applicable)** https://github.com/hwchase17/langchain/issues/6413 **Dependencies: any dependencies required for this change** `nbdoc` was missing in group docs so it was added. I installed it with the `poetry add --group docs nbdoc` command. I am concerned if any modifications are needed to poetry.lock. I would greatly appreciate it if you could pay close attention to this file during the review. **Tag maintainer** - General / Misc / if you don't know who to tag: @baskaryan If this PR needs any additional changes, I'll be happy to make them! --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 02:05:14 +00:00
" title=f\"My document {i}\",\n",
" title_embedding=embeddings.embed_query(f\"query {i}\"),\n",
DocArray as a Retriever (#6031) ## DocArray as a Retriever [DocArray](https://github.com/docarray/docarray) is an open-source tool for managing your multi-modal data. It offers flexibility to store and search through your data using various document index backends. This PR introduces `DocArrayRetriever` - which works with any available backend and serves as a retriever for Langchain apps. Also, I added 2 notebooks: DocArray Backends - intro to all 5 currently supported backends, how to initialize, index, and use them as a retriever DocArray Usage - showcasing what additional search parameters you can pass to create versatile retrievers Example: ```python from docarray.index import InMemoryExactNNIndex from docarray import BaseDoc, DocList from docarray.typing import NdArray from langchain.embeddings.openai import OpenAIEmbeddings from langchain.retrievers import DocArrayRetriever # define document schema class MyDoc(BaseDoc): description: str description_embedding: NdArray[1536] embeddings = OpenAIEmbeddings() # create documents descriptions = ["description 1", "description 2"] desc_embeddings = embeddings.embed_documents(texts=descriptions) docs = DocList[MyDoc]( [ MyDoc(description=desc, description_embedding=embedding) for desc, embedding in zip(descriptions, desc_embeddings) ] ) # initialize document index with data db = InMemoryExactNNIndex[MyDoc](docs) # create a retriever retriever = DocArrayRetriever( index=db, embeddings=embeddings, search_field="description_embedding", content_field="description", ) # find the relevant document doc = retriever.get_relevant_documents("action movies") print(doc) ``` #### Who can review? @dev2049 --------- Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
2023-06-17 16:09:33 +00:00
" year=i,\n",
Fix `make docs_build` and related scripts (#7276) **Description: a description of the change** Fixed `make docs_build` and related scripts which caused errors. There are several changes. First, I made the build of the documentation and the API Reference into two separate commands. This is because it takes less time to build. The commands for documents are `make docs_build`, `make docs_clean`, and `make docs_linkcheck`. The commands for API Reference are `make api_docs_build`, `api_docs_clean`, and `api_docs_linkcheck`. It looked like `docs/.local_build.sh` could be used to build the documentation, so I used that. Since `.local_build.sh` was also building API Rerefence internally, I removed that process. `.local_build.sh` also added some Bash options to stop in error or so. Futher more added `cd "${SCRIPT_DIR}"` at the beginning so that the script will work no matter which directory it is executed in. `docs/api_reference/api_reference.rst` is removed, because which is generated by `docs/api_reference/create_api_rst.py`, and added it to .gitignore. Finally, the description of CONTRIBUTING.md was modified. **Issue: the issue # it fixes (if applicable)** https://github.com/hwchase17/langchain/issues/6413 **Dependencies: any dependencies required for this change** `nbdoc` was missing in group docs so it was added. I installed it with the `poetry add --group docs nbdoc` command. I am concerned if any modifications are needed to poetry.lock. I would greatly appreciate it if you could pay close attention to this file during the review. **Tag maintainer** - General / Misc / if you don't know who to tag: @baskaryan If this PR needs any additional changes, I'll be happy to make them! --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 02:05:14 +00:00
" color=random.choice([\"red\", \"green\", \"blue\"]),\n",
DocArray as a Retriever (#6031) ## DocArray as a Retriever [DocArray](https://github.com/docarray/docarray) is an open-source tool for managing your multi-modal data. It offers flexibility to store and search through your data using various document index backends. This PR introduces `DocArrayRetriever` - which works with any available backend and serves as a retriever for Langchain apps. Also, I added 2 notebooks: DocArray Backends - intro to all 5 currently supported backends, how to initialize, index, and use them as a retriever DocArray Usage - showcasing what additional search parameters you can pass to create versatile retrievers Example: ```python from docarray.index import InMemoryExactNNIndex from docarray import BaseDoc, DocList from docarray.typing import NdArray from langchain.embeddings.openai import OpenAIEmbeddings from langchain.retrievers import DocArrayRetriever # define document schema class MyDoc(BaseDoc): description: str description_embedding: NdArray[1536] embeddings = OpenAIEmbeddings() # create documents descriptions = ["description 1", "description 2"] desc_embeddings = embeddings.embed_documents(texts=descriptions) docs = DocList[MyDoc]( [ MyDoc(description=desc, description_embedding=embedding) for desc, embedding in zip(descriptions, desc_embeddings) ] ) # initialize document index with data db = InMemoryExactNNIndex[MyDoc](docs) # create a retriever retriever = DocArrayRetriever( index=db, embeddings=embeddings, search_field="description_embedding", content_field="description", ) # find the relevant document doc = retriever.get_relevant_documents("action movies") print(doc) ``` #### Who can review? @dev2049 --------- Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
2023-06-17 16:09:33 +00:00
" )\n",
" for i in range(100)\n",
" ]\n",
")\n",
"# optionally, you can create a filter query\n",
"filter_query = {\"year\": {\"$lte\": 90}}"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "ea9eb5a0-a8f2-465b-81e2-52fb773466cf",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[Document(page_content='My document 28', metadata={'id': 'ca9f3f4268eec7c97a7d6e77f541cb82', 'year': 28, 'color': 'red'})]\n"
]
}
],
"source": [
"# create a retriever\n",
"retriever = DocArrayRetriever(\n",
Fix `make docs_build` and related scripts (#7276) **Description: a description of the change** Fixed `make docs_build` and related scripts which caused errors. There are several changes. First, I made the build of the documentation and the API Reference into two separate commands. This is because it takes less time to build. The commands for documents are `make docs_build`, `make docs_clean`, and `make docs_linkcheck`. The commands for API Reference are `make api_docs_build`, `api_docs_clean`, and `api_docs_linkcheck`. It looked like `docs/.local_build.sh` could be used to build the documentation, so I used that. Since `.local_build.sh` was also building API Rerefence internally, I removed that process. `.local_build.sh` also added some Bash options to stop in error or so. Futher more added `cd "${SCRIPT_DIR}"` at the beginning so that the script will work no matter which directory it is executed in. `docs/api_reference/api_reference.rst` is removed, because which is generated by `docs/api_reference/create_api_rst.py`, and added it to .gitignore. Finally, the description of CONTRIBUTING.md was modified. **Issue: the issue # it fixes (if applicable)** https://github.com/hwchase17/langchain/issues/6413 **Dependencies: any dependencies required for this change** `nbdoc` was missing in group docs so it was added. I installed it with the `poetry add --group docs nbdoc` command. I am concerned if any modifications are needed to poetry.lock. I would greatly appreciate it if you could pay close attention to this file during the review. **Tag maintainer** - General / Misc / if you don't know who to tag: @baskaryan If this PR needs any additional changes, I'll be happy to make them! --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 02:05:14 +00:00
" index=db,\n",
" embeddings=embeddings,\n",
" search_field=\"title_embedding\",\n",
" content_field=\"title\",\n",
DocArray as a Retriever (#6031) ## DocArray as a Retriever [DocArray](https://github.com/docarray/docarray) is an open-source tool for managing your multi-modal data. It offers flexibility to store and search through your data using various document index backends. This PR introduces `DocArrayRetriever` - which works with any available backend and serves as a retriever for Langchain apps. Also, I added 2 notebooks: DocArray Backends - intro to all 5 currently supported backends, how to initialize, index, and use them as a retriever DocArray Usage - showcasing what additional search parameters you can pass to create versatile retrievers Example: ```python from docarray.index import InMemoryExactNNIndex from docarray import BaseDoc, DocList from docarray.typing import NdArray from langchain.embeddings.openai import OpenAIEmbeddings from langchain.retrievers import DocArrayRetriever # define document schema class MyDoc(BaseDoc): description: str description_embedding: NdArray[1536] embeddings = OpenAIEmbeddings() # create documents descriptions = ["description 1", "description 2"] desc_embeddings = embeddings.embed_documents(texts=descriptions) docs = DocList[MyDoc]( [ MyDoc(description=desc, description_embedding=embedding) for desc, embedding in zip(descriptions, desc_embeddings) ] ) # initialize document index with data db = InMemoryExactNNIndex[MyDoc](docs) # create a retriever retriever = DocArrayRetriever( index=db, embeddings=embeddings, search_field="description_embedding", content_field="description", ) # find the relevant document doc = retriever.get_relevant_documents("action movies") print(doc) ``` #### Who can review? @dev2049 --------- Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
2023-06-17 16:09:33 +00:00
" filters=filter_query,\n",
")\n",
"\n",
"# find the relevant document\n",
Fix `make docs_build` and related scripts (#7276) **Description: a description of the change** Fixed `make docs_build` and related scripts which caused errors. There are several changes. First, I made the build of the documentation and the API Reference into two separate commands. This is because it takes less time to build. The commands for documents are `make docs_build`, `make docs_clean`, and `make docs_linkcheck`. The commands for API Reference are `make api_docs_build`, `api_docs_clean`, and `api_docs_linkcheck`. It looked like `docs/.local_build.sh` could be used to build the documentation, so I used that. Since `.local_build.sh` was also building API Rerefence internally, I removed that process. `.local_build.sh` also added some Bash options to stop in error or so. Futher more added `cd "${SCRIPT_DIR}"` at the beginning so that the script will work no matter which directory it is executed in. `docs/api_reference/api_reference.rst` is removed, because which is generated by `docs/api_reference/create_api_rst.py`, and added it to .gitignore. Finally, the description of CONTRIBUTING.md was modified. **Issue: the issue # it fixes (if applicable)** https://github.com/hwchase17/langchain/issues/6413 **Dependencies: any dependencies required for this change** `nbdoc` was missing in group docs so it was added. I installed it with the `poetry add --group docs nbdoc` command. I am concerned if any modifications are needed to poetry.lock. I would greatly appreciate it if you could pay close attention to this file during the review. **Tag maintainer** - General / Misc / if you don't know who to tag: @baskaryan If this PR needs any additional changes, I'll be happy to make them! --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 02:05:14 +00:00
"doc = retriever.get_relevant_documents(\"some query\")\n",
DocArray as a Retriever (#6031) ## DocArray as a Retriever [DocArray](https://github.com/docarray/docarray) is an open-source tool for managing your multi-modal data. It offers flexibility to store and search through your data using various document index backends. This PR introduces `DocArrayRetriever` - which works with any available backend and serves as a retriever for Langchain apps. Also, I added 2 notebooks: DocArray Backends - intro to all 5 currently supported backends, how to initialize, index, and use them as a retriever DocArray Usage - showcasing what additional search parameters you can pass to create versatile retrievers Example: ```python from docarray.index import InMemoryExactNNIndex from docarray import BaseDoc, DocList from docarray.typing import NdArray from langchain.embeddings.openai import OpenAIEmbeddings from langchain.retrievers import DocArrayRetriever # define document schema class MyDoc(BaseDoc): description: str description_embedding: NdArray[1536] embeddings = OpenAIEmbeddings() # create documents descriptions = ["description 1", "description 2"] desc_embeddings = embeddings.embed_documents(texts=descriptions) docs = DocList[MyDoc]( [ MyDoc(description=desc, description_embedding=embedding) for desc, embedding in zip(descriptions, desc_embeddings) ] ) # initialize document index with data db = InMemoryExactNNIndex[MyDoc](docs) # create a retriever retriever = DocArrayRetriever( index=db, embeddings=embeddings, search_field="description_embedding", content_field="description", ) # find the relevant document doc = retriever.get_relevant_documents("action movies") print(doc) ``` #### Who can review? @dev2049 --------- Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
2023-06-17 16:09:33 +00:00
"print(doc)"
]
},
{
"cell_type": "markdown",
"id": "7177442e-3fd3-4f3d-ab22-cd8265b35112",
"metadata": {},
"source": [
"## WeaviateDocumentIndex\n",
"\n",
"WeaviateDocumentIndex is a document index that is built upon [Weaviate](https://weaviate.io/) vector database.\n",
"\n",
"Learn more here: https://docs.docarray.org/user_guide/storing/index_weaviate/"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "8bcf17ba-8dce-4413-ab4e-61d9baee50e7",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
Fix `make docs_build` and related scripts (#7276) **Description: a description of the change** Fixed `make docs_build` and related scripts which caused errors. There are several changes. First, I made the build of the documentation and the API Reference into two separate commands. This is because it takes less time to build. The commands for documents are `make docs_build`, `make docs_clean`, and `make docs_linkcheck`. The commands for API Reference are `make api_docs_build`, `api_docs_clean`, and `api_docs_linkcheck`. It looked like `docs/.local_build.sh` could be used to build the documentation, so I used that. Since `.local_build.sh` was also building API Rerefence internally, I removed that process. `.local_build.sh` also added some Bash options to stop in error or so. Futher more added `cd "${SCRIPT_DIR}"` at the beginning so that the script will work no matter which directory it is executed in. `docs/api_reference/api_reference.rst` is removed, because which is generated by `docs/api_reference/create_api_rst.py`, and added it to .gitignore. Finally, the description of CONTRIBUTING.md was modified. **Issue: the issue # it fixes (if applicable)** https://github.com/hwchase17/langchain/issues/6413 **Dependencies: any dependencies required for this change** `nbdoc` was missing in group docs so it was added. I installed it with the `poetry add --group docs nbdoc` command. I am concerned if any modifications are needed to poetry.lock. I would greatly appreciate it if you could pay close attention to this file during the review. **Tag maintainer** - General / Misc / if you don't know who to tag: @baskaryan If this PR needs any additional changes, I'll be happy to make them! --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 02:05:14 +00:00
"# There's a small difference with the Weaviate backend compared to the others.\n",
"# Here, you need to 'mark' the field used for vector search with 'is_embedding=True'.\n",
DocArray as a Retriever (#6031) ## DocArray as a Retriever [DocArray](https://github.com/docarray/docarray) is an open-source tool for managing your multi-modal data. It offers flexibility to store and search through your data using various document index backends. This PR introduces `DocArrayRetriever` - which works with any available backend and serves as a retriever for Langchain apps. Also, I added 2 notebooks: DocArray Backends - intro to all 5 currently supported backends, how to initialize, index, and use them as a retriever DocArray Usage - showcasing what additional search parameters you can pass to create versatile retrievers Example: ```python from docarray.index import InMemoryExactNNIndex from docarray import BaseDoc, DocList from docarray.typing import NdArray from langchain.embeddings.openai import OpenAIEmbeddings from langchain.retrievers import DocArrayRetriever # define document schema class MyDoc(BaseDoc): description: str description_embedding: NdArray[1536] embeddings = OpenAIEmbeddings() # create documents descriptions = ["description 1", "description 2"] desc_embeddings = embeddings.embed_documents(texts=descriptions) docs = DocList[MyDoc]( [ MyDoc(description=desc, description_embedding=embedding) for desc, embedding in zip(descriptions, desc_embeddings) ] ) # initialize document index with data db = InMemoryExactNNIndex[MyDoc](docs) # create a retriever retriever = DocArrayRetriever( index=db, embeddings=embeddings, search_field="description_embedding", content_field="description", ) # find the relevant document doc = retriever.get_relevant_documents("action movies") print(doc) ``` #### Who can review? @dev2049 --------- Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
2023-06-17 16:09:33 +00:00
"# So, let's create a new schema for Weaviate that takes care of this requirement.\n",
"\n",
Fix `make docs_build` and related scripts (#7276) **Description: a description of the change** Fixed `make docs_build` and related scripts which caused errors. There are several changes. First, I made the build of the documentation and the API Reference into two separate commands. This is because it takes less time to build. The commands for documents are `make docs_build`, `make docs_clean`, and `make docs_linkcheck`. The commands for API Reference are `make api_docs_build`, `api_docs_clean`, and `api_docs_linkcheck`. It looked like `docs/.local_build.sh` could be used to build the documentation, so I used that. Since `.local_build.sh` was also building API Rerefence internally, I removed that process. `.local_build.sh` also added some Bash options to stop in error or so. Futher more added `cd "${SCRIPT_DIR}"` at the beginning so that the script will work no matter which directory it is executed in. `docs/api_reference/api_reference.rst` is removed, because which is generated by `docs/api_reference/create_api_rst.py`, and added it to .gitignore. Finally, the description of CONTRIBUTING.md was modified. **Issue: the issue # it fixes (if applicable)** https://github.com/hwchase17/langchain/issues/6413 **Dependencies: any dependencies required for this change** `nbdoc` was missing in group docs so it was added. I installed it with the `poetry add --group docs nbdoc` command. I am concerned if any modifications are needed to poetry.lock. I would greatly appreciate it if you could pay close attention to this file during the review. **Tag maintainer** - General / Misc / if you don't know who to tag: @baskaryan If this PR needs any additional changes, I'll be happy to make them! --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 02:05:14 +00:00
"from pydantic import Field\n",
"\n",
DocArray as a Retriever (#6031) ## DocArray as a Retriever [DocArray](https://github.com/docarray/docarray) is an open-source tool for managing your multi-modal data. It offers flexibility to store and search through your data using various document index backends. This PR introduces `DocArrayRetriever` - which works with any available backend and serves as a retriever for Langchain apps. Also, I added 2 notebooks: DocArray Backends - intro to all 5 currently supported backends, how to initialize, index, and use them as a retriever DocArray Usage - showcasing what additional search parameters you can pass to create versatile retrievers Example: ```python from docarray.index import InMemoryExactNNIndex from docarray import BaseDoc, DocList from docarray.typing import NdArray from langchain.embeddings.openai import OpenAIEmbeddings from langchain.retrievers import DocArrayRetriever # define document schema class MyDoc(BaseDoc): description: str description_embedding: NdArray[1536] embeddings = OpenAIEmbeddings() # create documents descriptions = ["description 1", "description 2"] desc_embeddings = embeddings.embed_documents(texts=descriptions) docs = DocList[MyDoc]( [ MyDoc(description=desc, description_embedding=embedding) for desc, embedding in zip(descriptions, desc_embeddings) ] ) # initialize document index with data db = InMemoryExactNNIndex[MyDoc](docs) # create a retriever retriever = DocArrayRetriever( index=db, embeddings=embeddings, search_field="description_embedding", content_field="description", ) # find the relevant document doc = retriever.get_relevant_documents("action movies") print(doc) ``` #### Who can review? @dev2049 --------- Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
2023-06-17 16:09:33 +00:00
"\n",
"class WeaviateDoc(BaseDoc):\n",
" title: str\n",
" title_embedding: NdArray[32] = Field(is_embedding=True)\n",
" year: int\n",
" color: str"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "4065dced-3e7e-43d3-8518-b31df1e74383",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from docarray.index import WeaviateDocumentIndex\n",
"\n",
"\n",
"# initialize the index\n",
Fix `make docs_build` and related scripts (#7276) **Description: a description of the change** Fixed `make docs_build` and related scripts which caused errors. There are several changes. First, I made the build of the documentation and the API Reference into two separate commands. This is because it takes less time to build. The commands for documents are `make docs_build`, `make docs_clean`, and `make docs_linkcheck`. The commands for API Reference are `make api_docs_build`, `api_docs_clean`, and `api_docs_linkcheck`. It looked like `docs/.local_build.sh` could be used to build the documentation, so I used that. Since `.local_build.sh` was also building API Rerefence internally, I removed that process. `.local_build.sh` also added some Bash options to stop in error or so. Futher more added `cd "${SCRIPT_DIR}"` at the beginning so that the script will work no matter which directory it is executed in. `docs/api_reference/api_reference.rst` is removed, because which is generated by `docs/api_reference/create_api_rst.py`, and added it to .gitignore. Finally, the description of CONTRIBUTING.md was modified. **Issue: the issue # it fixes (if applicable)** https://github.com/hwchase17/langchain/issues/6413 **Dependencies: any dependencies required for this change** `nbdoc` was missing in group docs so it was added. I installed it with the `poetry add --group docs nbdoc` command. I am concerned if any modifications are needed to poetry.lock. I would greatly appreciate it if you could pay close attention to this file during the review. **Tag maintainer** - General / Misc / if you don't know who to tag: @baskaryan If this PR needs any additional changes, I'll be happy to make them! --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 02:05:14 +00:00
"dbconfig = WeaviateDocumentIndex.DBConfig(host=\"http://localhost:8080\")\n",
DocArray as a Retriever (#6031) ## DocArray as a Retriever [DocArray](https://github.com/docarray/docarray) is an open-source tool for managing your multi-modal data. It offers flexibility to store and search through your data using various document index backends. This PR introduces `DocArrayRetriever` - which works with any available backend and serves as a retriever for Langchain apps. Also, I added 2 notebooks: DocArray Backends - intro to all 5 currently supported backends, how to initialize, index, and use them as a retriever DocArray Usage - showcasing what additional search parameters you can pass to create versatile retrievers Example: ```python from docarray.index import InMemoryExactNNIndex from docarray import BaseDoc, DocList from docarray.typing import NdArray from langchain.embeddings.openai import OpenAIEmbeddings from langchain.retrievers import DocArrayRetriever # define document schema class MyDoc(BaseDoc): description: str description_embedding: NdArray[1536] embeddings = OpenAIEmbeddings() # create documents descriptions = ["description 1", "description 2"] desc_embeddings = embeddings.embed_documents(texts=descriptions) docs = DocList[MyDoc]( [ MyDoc(description=desc, description_embedding=embedding) for desc, embedding in zip(descriptions, desc_embeddings) ] ) # initialize document index with data db = InMemoryExactNNIndex[MyDoc](docs) # create a retriever retriever = DocArrayRetriever( index=db, embeddings=embeddings, search_field="description_embedding", content_field="description", ) # find the relevant document doc = retriever.get_relevant_documents("action movies") print(doc) ``` #### Who can review? @dev2049 --------- Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
2023-06-17 16:09:33 +00:00
"db = WeaviateDocumentIndex[WeaviateDoc](db_config=dbconfig)\n",
"\n",
"# index data\n",
"db.index(\n",
" [\n",
" MyDoc(\n",
Fix `make docs_build` and related scripts (#7276) **Description: a description of the change** Fixed `make docs_build` and related scripts which caused errors. There are several changes. First, I made the build of the documentation and the API Reference into two separate commands. This is because it takes less time to build. The commands for documents are `make docs_build`, `make docs_clean`, and `make docs_linkcheck`. The commands for API Reference are `make api_docs_build`, `api_docs_clean`, and `api_docs_linkcheck`. It looked like `docs/.local_build.sh` could be used to build the documentation, so I used that. Since `.local_build.sh` was also building API Rerefence internally, I removed that process. `.local_build.sh` also added some Bash options to stop in error or so. Futher more added `cd "${SCRIPT_DIR}"` at the beginning so that the script will work no matter which directory it is executed in. `docs/api_reference/api_reference.rst` is removed, because which is generated by `docs/api_reference/create_api_rst.py`, and added it to .gitignore. Finally, the description of CONTRIBUTING.md was modified. **Issue: the issue # it fixes (if applicable)** https://github.com/hwchase17/langchain/issues/6413 **Dependencies: any dependencies required for this change** `nbdoc` was missing in group docs so it was added. I installed it with the `poetry add --group docs nbdoc` command. I am concerned if any modifications are needed to poetry.lock. I would greatly appreciate it if you could pay close attention to this file during the review. **Tag maintainer** - General / Misc / if you don't know who to tag: @baskaryan If this PR needs any additional changes, I'll be happy to make them! --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 02:05:14 +00:00
" title=f\"My document {i}\",\n",
" title_embedding=embeddings.embed_query(f\"query {i}\"),\n",
DocArray as a Retriever (#6031) ## DocArray as a Retriever [DocArray](https://github.com/docarray/docarray) is an open-source tool for managing your multi-modal data. It offers flexibility to store and search through your data using various document index backends. This PR introduces `DocArrayRetriever` - which works with any available backend and serves as a retriever for Langchain apps. Also, I added 2 notebooks: DocArray Backends - intro to all 5 currently supported backends, how to initialize, index, and use them as a retriever DocArray Usage - showcasing what additional search parameters you can pass to create versatile retrievers Example: ```python from docarray.index import InMemoryExactNNIndex from docarray import BaseDoc, DocList from docarray.typing import NdArray from langchain.embeddings.openai import OpenAIEmbeddings from langchain.retrievers import DocArrayRetriever # define document schema class MyDoc(BaseDoc): description: str description_embedding: NdArray[1536] embeddings = OpenAIEmbeddings() # create documents descriptions = ["description 1", "description 2"] desc_embeddings = embeddings.embed_documents(texts=descriptions) docs = DocList[MyDoc]( [ MyDoc(description=desc, description_embedding=embedding) for desc, embedding in zip(descriptions, desc_embeddings) ] ) # initialize document index with data db = InMemoryExactNNIndex[MyDoc](docs) # create a retriever retriever = DocArrayRetriever( index=db, embeddings=embeddings, search_field="description_embedding", content_field="description", ) # find the relevant document doc = retriever.get_relevant_documents("action movies") print(doc) ``` #### Who can review? @dev2049 --------- Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
2023-06-17 16:09:33 +00:00
" year=i,\n",
Fix `make docs_build` and related scripts (#7276) **Description: a description of the change** Fixed `make docs_build` and related scripts which caused errors. There are several changes. First, I made the build of the documentation and the API Reference into two separate commands. This is because it takes less time to build. The commands for documents are `make docs_build`, `make docs_clean`, and `make docs_linkcheck`. The commands for API Reference are `make api_docs_build`, `api_docs_clean`, and `api_docs_linkcheck`. It looked like `docs/.local_build.sh` could be used to build the documentation, so I used that. Since `.local_build.sh` was also building API Rerefence internally, I removed that process. `.local_build.sh` also added some Bash options to stop in error or so. Futher more added `cd "${SCRIPT_DIR}"` at the beginning so that the script will work no matter which directory it is executed in. `docs/api_reference/api_reference.rst` is removed, because which is generated by `docs/api_reference/create_api_rst.py`, and added it to .gitignore. Finally, the description of CONTRIBUTING.md was modified. **Issue: the issue # it fixes (if applicable)** https://github.com/hwchase17/langchain/issues/6413 **Dependencies: any dependencies required for this change** `nbdoc` was missing in group docs so it was added. I installed it with the `poetry add --group docs nbdoc` command. I am concerned if any modifications are needed to poetry.lock. I would greatly appreciate it if you could pay close attention to this file during the review. **Tag maintainer** - General / Misc / if you don't know who to tag: @baskaryan If this PR needs any additional changes, I'll be happy to make them! --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 02:05:14 +00:00
" color=random.choice([\"red\", \"green\", \"blue\"]),\n",
DocArray as a Retriever (#6031) ## DocArray as a Retriever [DocArray](https://github.com/docarray/docarray) is an open-source tool for managing your multi-modal data. It offers flexibility to store and search through your data using various document index backends. This PR introduces `DocArrayRetriever` - which works with any available backend and serves as a retriever for Langchain apps. Also, I added 2 notebooks: DocArray Backends - intro to all 5 currently supported backends, how to initialize, index, and use them as a retriever DocArray Usage - showcasing what additional search parameters you can pass to create versatile retrievers Example: ```python from docarray.index import InMemoryExactNNIndex from docarray import BaseDoc, DocList from docarray.typing import NdArray from langchain.embeddings.openai import OpenAIEmbeddings from langchain.retrievers import DocArrayRetriever # define document schema class MyDoc(BaseDoc): description: str description_embedding: NdArray[1536] embeddings = OpenAIEmbeddings() # create documents descriptions = ["description 1", "description 2"] desc_embeddings = embeddings.embed_documents(texts=descriptions) docs = DocList[MyDoc]( [ MyDoc(description=desc, description_embedding=embedding) for desc, embedding in zip(descriptions, desc_embeddings) ] ) # initialize document index with data db = InMemoryExactNNIndex[MyDoc](docs) # create a retriever retriever = DocArrayRetriever( index=db, embeddings=embeddings, search_field="description_embedding", content_field="description", ) # find the relevant document doc = retriever.get_relevant_documents("action movies") print(doc) ``` #### Who can review? @dev2049 --------- Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
2023-06-17 16:09:33 +00:00
" )\n",
" for i in range(100)\n",
" ]\n",
")\n",
"# optionally, you can create a filter query\n",
"filter_query = {\"path\": [\"year\"], \"operator\": \"LessThanEqual\", \"valueInt\": \"90\"}"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "4e21d124-0f3c-445b-b9fc-dc7c8d6b3d2b",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[Document(page_content='My document 17', metadata={'id': '3a5b76e85f0d0a01785dc8f9d965ce40', 'year': 17, 'color': 'red'})]\n"
]
}
],
"source": [
"# create a retriever\n",
"retriever = DocArrayRetriever(\n",
Fix `make docs_build` and related scripts (#7276) **Description: a description of the change** Fixed `make docs_build` and related scripts which caused errors. There are several changes. First, I made the build of the documentation and the API Reference into two separate commands. This is because it takes less time to build. The commands for documents are `make docs_build`, `make docs_clean`, and `make docs_linkcheck`. The commands for API Reference are `make api_docs_build`, `api_docs_clean`, and `api_docs_linkcheck`. It looked like `docs/.local_build.sh` could be used to build the documentation, so I used that. Since `.local_build.sh` was also building API Rerefence internally, I removed that process. `.local_build.sh` also added some Bash options to stop in error or so. Futher more added `cd "${SCRIPT_DIR}"` at the beginning so that the script will work no matter which directory it is executed in. `docs/api_reference/api_reference.rst` is removed, because which is generated by `docs/api_reference/create_api_rst.py`, and added it to .gitignore. Finally, the description of CONTRIBUTING.md was modified. **Issue: the issue # it fixes (if applicable)** https://github.com/hwchase17/langchain/issues/6413 **Dependencies: any dependencies required for this change** `nbdoc` was missing in group docs so it was added. I installed it with the `poetry add --group docs nbdoc` command. I am concerned if any modifications are needed to poetry.lock. I would greatly appreciate it if you could pay close attention to this file during the review. **Tag maintainer** - General / Misc / if you don't know who to tag: @baskaryan If this PR needs any additional changes, I'll be happy to make them! --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 02:05:14 +00:00
" index=db,\n",
" embeddings=embeddings,\n",
" search_field=\"title_embedding\",\n",
" content_field=\"title\",\n",
DocArray as a Retriever (#6031) ## DocArray as a Retriever [DocArray](https://github.com/docarray/docarray) is an open-source tool for managing your multi-modal data. It offers flexibility to store and search through your data using various document index backends. This PR introduces `DocArrayRetriever` - which works with any available backend and serves as a retriever for Langchain apps. Also, I added 2 notebooks: DocArray Backends - intro to all 5 currently supported backends, how to initialize, index, and use them as a retriever DocArray Usage - showcasing what additional search parameters you can pass to create versatile retrievers Example: ```python from docarray.index import InMemoryExactNNIndex from docarray import BaseDoc, DocList from docarray.typing import NdArray from langchain.embeddings.openai import OpenAIEmbeddings from langchain.retrievers import DocArrayRetriever # define document schema class MyDoc(BaseDoc): description: str description_embedding: NdArray[1536] embeddings = OpenAIEmbeddings() # create documents descriptions = ["description 1", "description 2"] desc_embeddings = embeddings.embed_documents(texts=descriptions) docs = DocList[MyDoc]( [ MyDoc(description=desc, description_embedding=embedding) for desc, embedding in zip(descriptions, desc_embeddings) ] ) # initialize document index with data db = InMemoryExactNNIndex[MyDoc](docs) # create a retriever retriever = DocArrayRetriever( index=db, embeddings=embeddings, search_field="description_embedding", content_field="description", ) # find the relevant document doc = retriever.get_relevant_documents("action movies") print(doc) ``` #### Who can review? @dev2049 --------- Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
2023-06-17 16:09:33 +00:00
" filters=filter_query,\n",
")\n",
"\n",
"# find the relevant document\n",
Fix `make docs_build` and related scripts (#7276) **Description: a description of the change** Fixed `make docs_build` and related scripts which caused errors. There are several changes. First, I made the build of the documentation and the API Reference into two separate commands. This is because it takes less time to build. The commands for documents are `make docs_build`, `make docs_clean`, and `make docs_linkcheck`. The commands for API Reference are `make api_docs_build`, `api_docs_clean`, and `api_docs_linkcheck`. It looked like `docs/.local_build.sh` could be used to build the documentation, so I used that. Since `.local_build.sh` was also building API Rerefence internally, I removed that process. `.local_build.sh` also added some Bash options to stop in error or so. Futher more added `cd "${SCRIPT_DIR}"` at the beginning so that the script will work no matter which directory it is executed in. `docs/api_reference/api_reference.rst` is removed, because which is generated by `docs/api_reference/create_api_rst.py`, and added it to .gitignore. Finally, the description of CONTRIBUTING.md was modified. **Issue: the issue # it fixes (if applicable)** https://github.com/hwchase17/langchain/issues/6413 **Dependencies: any dependencies required for this change** `nbdoc` was missing in group docs so it was added. I installed it with the `poetry add --group docs nbdoc` command. I am concerned if any modifications are needed to poetry.lock. I would greatly appreciate it if you could pay close attention to this file during the review. **Tag maintainer** - General / Misc / if you don't know who to tag: @baskaryan If this PR needs any additional changes, I'll be happy to make them! --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 02:05:14 +00:00
"doc = retriever.get_relevant_documents(\"some query\")\n",
DocArray as a Retriever (#6031) ## DocArray as a Retriever [DocArray](https://github.com/docarray/docarray) is an open-source tool for managing your multi-modal data. It offers flexibility to store and search through your data using various document index backends. This PR introduces `DocArrayRetriever` - which works with any available backend and serves as a retriever for Langchain apps. Also, I added 2 notebooks: DocArray Backends - intro to all 5 currently supported backends, how to initialize, index, and use them as a retriever DocArray Usage - showcasing what additional search parameters you can pass to create versatile retrievers Example: ```python from docarray.index import InMemoryExactNNIndex from docarray import BaseDoc, DocList from docarray.typing import NdArray from langchain.embeddings.openai import OpenAIEmbeddings from langchain.retrievers import DocArrayRetriever # define document schema class MyDoc(BaseDoc): description: str description_embedding: NdArray[1536] embeddings = OpenAIEmbeddings() # create documents descriptions = ["description 1", "description 2"] desc_embeddings = embeddings.embed_documents(texts=descriptions) docs = DocList[MyDoc]( [ MyDoc(description=desc, description_embedding=embedding) for desc, embedding in zip(descriptions, desc_embeddings) ] ) # initialize document index with data db = InMemoryExactNNIndex[MyDoc](docs) # create a retriever retriever = DocArrayRetriever( index=db, embeddings=embeddings, search_field="description_embedding", content_field="description", ) # find the relevant document doc = retriever.get_relevant_documents("action movies") print(doc) ``` #### Who can review? @dev2049 --------- Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
2023-06-17 16:09:33 +00:00
"print(doc)"
]
},
{
"cell_type": "markdown",
"id": "6ee8f920-9297-4b0a-a353-053a86947d10",
"metadata": {},
"source": [
"## ElasticDocIndex\n",
"\n",
"ElasticDocIndex is a document index that is built upon [ElasticSearch](https://github.com/elastic/elasticsearch)\n",
"\n",
"Learn more here: https://docs.docarray.org/user_guide/storing/index_elastic/"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "92980ead-e4dc-4eef-8618-1c0583f76d7a",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from docarray.index import ElasticDocIndex\n",
"\n",
"\n",
"# initialize the index\n",
"db = ElasticDocIndex[MyDoc](\n",
Fix `make docs_build` and related scripts (#7276) **Description: a description of the change** Fixed `make docs_build` and related scripts which caused errors. There are several changes. First, I made the build of the documentation and the API Reference into two separate commands. This is because it takes less time to build. The commands for documents are `make docs_build`, `make docs_clean`, and `make docs_linkcheck`. The commands for API Reference are `make api_docs_build`, `api_docs_clean`, and `api_docs_linkcheck`. It looked like `docs/.local_build.sh` could be used to build the documentation, so I used that. Since `.local_build.sh` was also building API Rerefence internally, I removed that process. `.local_build.sh` also added some Bash options to stop in error or so. Futher more added `cd "${SCRIPT_DIR}"` at the beginning so that the script will work no matter which directory it is executed in. `docs/api_reference/api_reference.rst` is removed, because which is generated by `docs/api_reference/create_api_rst.py`, and added it to .gitignore. Finally, the description of CONTRIBUTING.md was modified. **Issue: the issue # it fixes (if applicable)** https://github.com/hwchase17/langchain/issues/6413 **Dependencies: any dependencies required for this change** `nbdoc` was missing in group docs so it was added. I installed it with the `poetry add --group docs nbdoc` command. I am concerned if any modifications are needed to poetry.lock. I would greatly appreciate it if you could pay close attention to this file during the review. **Tag maintainer** - General / Misc / if you don't know who to tag: @baskaryan If this PR needs any additional changes, I'll be happy to make them! --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 02:05:14 +00:00
" hosts=\"http://localhost:9200\", index_name=\"docarray_retriever\"\n",
DocArray as a Retriever (#6031) ## DocArray as a Retriever [DocArray](https://github.com/docarray/docarray) is an open-source tool for managing your multi-modal data. It offers flexibility to store and search through your data using various document index backends. This PR introduces `DocArrayRetriever` - which works with any available backend and serves as a retriever for Langchain apps. Also, I added 2 notebooks: DocArray Backends - intro to all 5 currently supported backends, how to initialize, index, and use them as a retriever DocArray Usage - showcasing what additional search parameters you can pass to create versatile retrievers Example: ```python from docarray.index import InMemoryExactNNIndex from docarray import BaseDoc, DocList from docarray.typing import NdArray from langchain.embeddings.openai import OpenAIEmbeddings from langchain.retrievers import DocArrayRetriever # define document schema class MyDoc(BaseDoc): description: str description_embedding: NdArray[1536] embeddings = OpenAIEmbeddings() # create documents descriptions = ["description 1", "description 2"] desc_embeddings = embeddings.embed_documents(texts=descriptions) docs = DocList[MyDoc]( [ MyDoc(description=desc, description_embedding=embedding) for desc, embedding in zip(descriptions, desc_embeddings) ] ) # initialize document index with data db = InMemoryExactNNIndex[MyDoc](docs) # create a retriever retriever = DocArrayRetriever( index=db, embeddings=embeddings, search_field="description_embedding", content_field="description", ) # find the relevant document doc = retriever.get_relevant_documents("action movies") print(doc) ``` #### Who can review? @dev2049 --------- Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
2023-06-17 16:09:33 +00:00
")\n",
"\n",
"# index data\n",
"db.index(\n",
" [\n",
" MyDoc(\n",
Fix `make docs_build` and related scripts (#7276) **Description: a description of the change** Fixed `make docs_build` and related scripts which caused errors. There are several changes. First, I made the build of the documentation and the API Reference into two separate commands. This is because it takes less time to build. The commands for documents are `make docs_build`, `make docs_clean`, and `make docs_linkcheck`. The commands for API Reference are `make api_docs_build`, `api_docs_clean`, and `api_docs_linkcheck`. It looked like `docs/.local_build.sh` could be used to build the documentation, so I used that. Since `.local_build.sh` was also building API Rerefence internally, I removed that process. `.local_build.sh` also added some Bash options to stop in error or so. Futher more added `cd "${SCRIPT_DIR}"` at the beginning so that the script will work no matter which directory it is executed in. `docs/api_reference/api_reference.rst` is removed, because which is generated by `docs/api_reference/create_api_rst.py`, and added it to .gitignore. Finally, the description of CONTRIBUTING.md was modified. **Issue: the issue # it fixes (if applicable)** https://github.com/hwchase17/langchain/issues/6413 **Dependencies: any dependencies required for this change** `nbdoc` was missing in group docs so it was added. I installed it with the `poetry add --group docs nbdoc` command. I am concerned if any modifications are needed to poetry.lock. I would greatly appreciate it if you could pay close attention to this file during the review. **Tag maintainer** - General / Misc / if you don't know who to tag: @baskaryan If this PR needs any additional changes, I'll be happy to make them! --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 02:05:14 +00:00
" title=f\"My document {i}\",\n",
" title_embedding=embeddings.embed_query(f\"query {i}\"),\n",
DocArray as a Retriever (#6031) ## DocArray as a Retriever [DocArray](https://github.com/docarray/docarray) is an open-source tool for managing your multi-modal data. It offers flexibility to store and search through your data using various document index backends. This PR introduces `DocArrayRetriever` - which works with any available backend and serves as a retriever for Langchain apps. Also, I added 2 notebooks: DocArray Backends - intro to all 5 currently supported backends, how to initialize, index, and use them as a retriever DocArray Usage - showcasing what additional search parameters you can pass to create versatile retrievers Example: ```python from docarray.index import InMemoryExactNNIndex from docarray import BaseDoc, DocList from docarray.typing import NdArray from langchain.embeddings.openai import OpenAIEmbeddings from langchain.retrievers import DocArrayRetriever # define document schema class MyDoc(BaseDoc): description: str description_embedding: NdArray[1536] embeddings = OpenAIEmbeddings() # create documents descriptions = ["description 1", "description 2"] desc_embeddings = embeddings.embed_documents(texts=descriptions) docs = DocList[MyDoc]( [ MyDoc(description=desc, description_embedding=embedding) for desc, embedding in zip(descriptions, desc_embeddings) ] ) # initialize document index with data db = InMemoryExactNNIndex[MyDoc](docs) # create a retriever retriever = DocArrayRetriever( index=db, embeddings=embeddings, search_field="description_embedding", content_field="description", ) # find the relevant document doc = retriever.get_relevant_documents("action movies") print(doc) ``` #### Who can review? @dev2049 --------- Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
2023-06-17 16:09:33 +00:00
" year=i,\n",
Fix `make docs_build` and related scripts (#7276) **Description: a description of the change** Fixed `make docs_build` and related scripts which caused errors. There are several changes. First, I made the build of the documentation and the API Reference into two separate commands. This is because it takes less time to build. The commands for documents are `make docs_build`, `make docs_clean`, and `make docs_linkcheck`. The commands for API Reference are `make api_docs_build`, `api_docs_clean`, and `api_docs_linkcheck`. It looked like `docs/.local_build.sh` could be used to build the documentation, so I used that. Since `.local_build.sh` was also building API Rerefence internally, I removed that process. `.local_build.sh` also added some Bash options to stop in error or so. Futher more added `cd "${SCRIPT_DIR}"` at the beginning so that the script will work no matter which directory it is executed in. `docs/api_reference/api_reference.rst` is removed, because which is generated by `docs/api_reference/create_api_rst.py`, and added it to .gitignore. Finally, the description of CONTRIBUTING.md was modified. **Issue: the issue # it fixes (if applicable)** https://github.com/hwchase17/langchain/issues/6413 **Dependencies: any dependencies required for this change** `nbdoc` was missing in group docs so it was added. I installed it with the `poetry add --group docs nbdoc` command. I am concerned if any modifications are needed to poetry.lock. I would greatly appreciate it if you could pay close attention to this file during the review. **Tag maintainer** - General / Misc / if you don't know who to tag: @baskaryan If this PR needs any additional changes, I'll be happy to make them! --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 02:05:14 +00:00
" color=random.choice([\"red\", \"green\", \"blue\"]),\n",
DocArray as a Retriever (#6031) ## DocArray as a Retriever [DocArray](https://github.com/docarray/docarray) is an open-source tool for managing your multi-modal data. It offers flexibility to store and search through your data using various document index backends. This PR introduces `DocArrayRetriever` - which works with any available backend and serves as a retriever for Langchain apps. Also, I added 2 notebooks: DocArray Backends - intro to all 5 currently supported backends, how to initialize, index, and use them as a retriever DocArray Usage - showcasing what additional search parameters you can pass to create versatile retrievers Example: ```python from docarray.index import InMemoryExactNNIndex from docarray import BaseDoc, DocList from docarray.typing import NdArray from langchain.embeddings.openai import OpenAIEmbeddings from langchain.retrievers import DocArrayRetriever # define document schema class MyDoc(BaseDoc): description: str description_embedding: NdArray[1536] embeddings = OpenAIEmbeddings() # create documents descriptions = ["description 1", "description 2"] desc_embeddings = embeddings.embed_documents(texts=descriptions) docs = DocList[MyDoc]( [ MyDoc(description=desc, description_embedding=embedding) for desc, embedding in zip(descriptions, desc_embeddings) ] ) # initialize document index with data db = InMemoryExactNNIndex[MyDoc](docs) # create a retriever retriever = DocArrayRetriever( index=db, embeddings=embeddings, search_field="description_embedding", content_field="description", ) # find the relevant document doc = retriever.get_relevant_documents("action movies") print(doc) ``` #### Who can review? @dev2049 --------- Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
2023-06-17 16:09:33 +00:00
" )\n",
" for i in range(100)\n",
" ]\n",
")\n",
"# optionally, you can create a filter query\n",
"filter_query = {\"range\": {\"year\": {\"lte\": 90}}}"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "8a8e97f3-c3a1-4c7f-b776-363c5e7dd69d",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[Document(page_content='My document 46', metadata={'id': 'edbc721bac1c2ad323414ad1301528a4', 'year': 46, 'color': 'green'})]\n"
]
}
],
"source": [
"# create a retriever\n",
"retriever = DocArrayRetriever(\n",
Fix `make docs_build` and related scripts (#7276) **Description: a description of the change** Fixed `make docs_build` and related scripts which caused errors. There are several changes. First, I made the build of the documentation and the API Reference into two separate commands. This is because it takes less time to build. The commands for documents are `make docs_build`, `make docs_clean`, and `make docs_linkcheck`. The commands for API Reference are `make api_docs_build`, `api_docs_clean`, and `api_docs_linkcheck`. It looked like `docs/.local_build.sh` could be used to build the documentation, so I used that. Since `.local_build.sh` was also building API Rerefence internally, I removed that process. `.local_build.sh` also added some Bash options to stop in error or so. Futher more added `cd "${SCRIPT_DIR}"` at the beginning so that the script will work no matter which directory it is executed in. `docs/api_reference/api_reference.rst` is removed, because which is generated by `docs/api_reference/create_api_rst.py`, and added it to .gitignore. Finally, the description of CONTRIBUTING.md was modified. **Issue: the issue # it fixes (if applicable)** https://github.com/hwchase17/langchain/issues/6413 **Dependencies: any dependencies required for this change** `nbdoc` was missing in group docs so it was added. I installed it with the `poetry add --group docs nbdoc` command. I am concerned if any modifications are needed to poetry.lock. I would greatly appreciate it if you could pay close attention to this file during the review. **Tag maintainer** - General / Misc / if you don't know who to tag: @baskaryan If this PR needs any additional changes, I'll be happy to make them! --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 02:05:14 +00:00
" index=db,\n",
" embeddings=embeddings,\n",
" search_field=\"title_embedding\",\n",
" content_field=\"title\",\n",
DocArray as a Retriever (#6031) ## DocArray as a Retriever [DocArray](https://github.com/docarray/docarray) is an open-source tool for managing your multi-modal data. It offers flexibility to store and search through your data using various document index backends. This PR introduces `DocArrayRetriever` - which works with any available backend and serves as a retriever for Langchain apps. Also, I added 2 notebooks: DocArray Backends - intro to all 5 currently supported backends, how to initialize, index, and use them as a retriever DocArray Usage - showcasing what additional search parameters you can pass to create versatile retrievers Example: ```python from docarray.index import InMemoryExactNNIndex from docarray import BaseDoc, DocList from docarray.typing import NdArray from langchain.embeddings.openai import OpenAIEmbeddings from langchain.retrievers import DocArrayRetriever # define document schema class MyDoc(BaseDoc): description: str description_embedding: NdArray[1536] embeddings = OpenAIEmbeddings() # create documents descriptions = ["description 1", "description 2"] desc_embeddings = embeddings.embed_documents(texts=descriptions) docs = DocList[MyDoc]( [ MyDoc(description=desc, description_embedding=embedding) for desc, embedding in zip(descriptions, desc_embeddings) ] ) # initialize document index with data db = InMemoryExactNNIndex[MyDoc](docs) # create a retriever retriever = DocArrayRetriever( index=db, embeddings=embeddings, search_field="description_embedding", content_field="description", ) # find the relevant document doc = retriever.get_relevant_documents("action movies") print(doc) ``` #### Who can review? @dev2049 --------- Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
2023-06-17 16:09:33 +00:00
" filters=filter_query,\n",
")\n",
"\n",
"# find the relevant document\n",
Fix `make docs_build` and related scripts (#7276) **Description: a description of the change** Fixed `make docs_build` and related scripts which caused errors. There are several changes. First, I made the build of the documentation and the API Reference into two separate commands. This is because it takes less time to build. The commands for documents are `make docs_build`, `make docs_clean`, and `make docs_linkcheck`. The commands for API Reference are `make api_docs_build`, `api_docs_clean`, and `api_docs_linkcheck`. It looked like `docs/.local_build.sh` could be used to build the documentation, so I used that. Since `.local_build.sh` was also building API Rerefence internally, I removed that process. `.local_build.sh` also added some Bash options to stop in error or so. Futher more added `cd "${SCRIPT_DIR}"` at the beginning so that the script will work no matter which directory it is executed in. `docs/api_reference/api_reference.rst` is removed, because which is generated by `docs/api_reference/create_api_rst.py`, and added it to .gitignore. Finally, the description of CONTRIBUTING.md was modified. **Issue: the issue # it fixes (if applicable)** https://github.com/hwchase17/langchain/issues/6413 **Dependencies: any dependencies required for this change** `nbdoc` was missing in group docs so it was added. I installed it with the `poetry add --group docs nbdoc` command. I am concerned if any modifications are needed to poetry.lock. I would greatly appreciate it if you could pay close attention to this file during the review. **Tag maintainer** - General / Misc / if you don't know who to tag: @baskaryan If this PR needs any additional changes, I'll be happy to make them! --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 02:05:14 +00:00
"doc = retriever.get_relevant_documents(\"some query\")\n",
DocArray as a Retriever (#6031) ## DocArray as a Retriever [DocArray](https://github.com/docarray/docarray) is an open-source tool for managing your multi-modal data. It offers flexibility to store and search through your data using various document index backends. This PR introduces `DocArrayRetriever` - which works with any available backend and serves as a retriever for Langchain apps. Also, I added 2 notebooks: DocArray Backends - intro to all 5 currently supported backends, how to initialize, index, and use them as a retriever DocArray Usage - showcasing what additional search parameters you can pass to create versatile retrievers Example: ```python from docarray.index import InMemoryExactNNIndex from docarray import BaseDoc, DocList from docarray.typing import NdArray from langchain.embeddings.openai import OpenAIEmbeddings from langchain.retrievers import DocArrayRetriever # define document schema class MyDoc(BaseDoc): description: str description_embedding: NdArray[1536] embeddings = OpenAIEmbeddings() # create documents descriptions = ["description 1", "description 2"] desc_embeddings = embeddings.embed_documents(texts=descriptions) docs = DocList[MyDoc]( [ MyDoc(description=desc, description_embedding=embedding) for desc, embedding in zip(descriptions, desc_embeddings) ] ) # initialize document index with data db = InMemoryExactNNIndex[MyDoc](docs) # create a retriever retriever = DocArrayRetriever( index=db, embeddings=embeddings, search_field="description_embedding", content_field="description", ) # find the relevant document doc = retriever.get_relevant_documents("action movies") print(doc) ``` #### Who can review? @dev2049 --------- Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
2023-06-17 16:09:33 +00:00
"print(doc)"
]
},
{
"cell_type": "markdown",
"id": "281432f8-87a5-4f22-a582-9d5dac33d158",
"metadata": {},
"source": [
"## QdrantDocumentIndex\n",
"\n",
"QdrantDocumentIndex is a document index that is build upon [Qdrant](https://qdrant.tech/) vector database\n",
"\n",
"Learn more here: https://docs.docarray.org/user_guide/storing/index_qdrant/"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "b6fd91d0-630a-4974-bdf1-6dfa4d1a68f5",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING:root:Payload indexes have no effect in the local Qdrant. Please use server Qdrant if you need payload indexes.\n"
]
}
],
"source": [
"from docarray.index import QdrantDocumentIndex\n",
"from qdrant_client.http import models as rest\n",
"\n",
"\n",
"# initialize the index\n",
"qdrant_config = QdrantDocumentIndex.DBConfig(path=\":memory:\")\n",
"db = QdrantDocumentIndex[MyDoc](qdrant_config)\n",
"\n",
"# index data\n",
"db.index(\n",
" [\n",
" MyDoc(\n",
Fix `make docs_build` and related scripts (#7276) **Description: a description of the change** Fixed `make docs_build` and related scripts which caused errors. There are several changes. First, I made the build of the documentation and the API Reference into two separate commands. This is because it takes less time to build. The commands for documents are `make docs_build`, `make docs_clean`, and `make docs_linkcheck`. The commands for API Reference are `make api_docs_build`, `api_docs_clean`, and `api_docs_linkcheck`. It looked like `docs/.local_build.sh` could be used to build the documentation, so I used that. Since `.local_build.sh` was also building API Rerefence internally, I removed that process. `.local_build.sh` also added some Bash options to stop in error or so. Futher more added `cd "${SCRIPT_DIR}"` at the beginning so that the script will work no matter which directory it is executed in. `docs/api_reference/api_reference.rst` is removed, because which is generated by `docs/api_reference/create_api_rst.py`, and added it to .gitignore. Finally, the description of CONTRIBUTING.md was modified. **Issue: the issue # it fixes (if applicable)** https://github.com/hwchase17/langchain/issues/6413 **Dependencies: any dependencies required for this change** `nbdoc` was missing in group docs so it was added. I installed it with the `poetry add --group docs nbdoc` command. I am concerned if any modifications are needed to poetry.lock. I would greatly appreciate it if you could pay close attention to this file during the review. **Tag maintainer** - General / Misc / if you don't know who to tag: @baskaryan If this PR needs any additional changes, I'll be happy to make them! --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 02:05:14 +00:00
" title=f\"My document {i}\",\n",
" title_embedding=embeddings.embed_query(f\"query {i}\"),\n",
DocArray as a Retriever (#6031) ## DocArray as a Retriever [DocArray](https://github.com/docarray/docarray) is an open-source tool for managing your multi-modal data. It offers flexibility to store and search through your data using various document index backends. This PR introduces `DocArrayRetriever` - which works with any available backend and serves as a retriever for Langchain apps. Also, I added 2 notebooks: DocArray Backends - intro to all 5 currently supported backends, how to initialize, index, and use them as a retriever DocArray Usage - showcasing what additional search parameters you can pass to create versatile retrievers Example: ```python from docarray.index import InMemoryExactNNIndex from docarray import BaseDoc, DocList from docarray.typing import NdArray from langchain.embeddings.openai import OpenAIEmbeddings from langchain.retrievers import DocArrayRetriever # define document schema class MyDoc(BaseDoc): description: str description_embedding: NdArray[1536] embeddings = OpenAIEmbeddings() # create documents descriptions = ["description 1", "description 2"] desc_embeddings = embeddings.embed_documents(texts=descriptions) docs = DocList[MyDoc]( [ MyDoc(description=desc, description_embedding=embedding) for desc, embedding in zip(descriptions, desc_embeddings) ] ) # initialize document index with data db = InMemoryExactNNIndex[MyDoc](docs) # create a retriever retriever = DocArrayRetriever( index=db, embeddings=embeddings, search_field="description_embedding", content_field="description", ) # find the relevant document doc = retriever.get_relevant_documents("action movies") print(doc) ``` #### Who can review? @dev2049 --------- Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
2023-06-17 16:09:33 +00:00
" year=i,\n",
Fix `make docs_build` and related scripts (#7276) **Description: a description of the change** Fixed `make docs_build` and related scripts which caused errors. There are several changes. First, I made the build of the documentation and the API Reference into two separate commands. This is because it takes less time to build. The commands for documents are `make docs_build`, `make docs_clean`, and `make docs_linkcheck`. The commands for API Reference are `make api_docs_build`, `api_docs_clean`, and `api_docs_linkcheck`. It looked like `docs/.local_build.sh` could be used to build the documentation, so I used that. Since `.local_build.sh` was also building API Rerefence internally, I removed that process. `.local_build.sh` also added some Bash options to stop in error or so. Futher more added `cd "${SCRIPT_DIR}"` at the beginning so that the script will work no matter which directory it is executed in. `docs/api_reference/api_reference.rst` is removed, because which is generated by `docs/api_reference/create_api_rst.py`, and added it to .gitignore. Finally, the description of CONTRIBUTING.md was modified. **Issue: the issue # it fixes (if applicable)** https://github.com/hwchase17/langchain/issues/6413 **Dependencies: any dependencies required for this change** `nbdoc` was missing in group docs so it was added. I installed it with the `poetry add --group docs nbdoc` command. I am concerned if any modifications are needed to poetry.lock. I would greatly appreciate it if you could pay close attention to this file during the review. **Tag maintainer** - General / Misc / if you don't know who to tag: @baskaryan If this PR needs any additional changes, I'll be happy to make them! --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 02:05:14 +00:00
" color=random.choice([\"red\", \"green\", \"blue\"]),\n",
DocArray as a Retriever (#6031) ## DocArray as a Retriever [DocArray](https://github.com/docarray/docarray) is an open-source tool for managing your multi-modal data. It offers flexibility to store and search through your data using various document index backends. This PR introduces `DocArrayRetriever` - which works with any available backend and serves as a retriever for Langchain apps. Also, I added 2 notebooks: DocArray Backends - intro to all 5 currently supported backends, how to initialize, index, and use them as a retriever DocArray Usage - showcasing what additional search parameters you can pass to create versatile retrievers Example: ```python from docarray.index import InMemoryExactNNIndex from docarray import BaseDoc, DocList from docarray.typing import NdArray from langchain.embeddings.openai import OpenAIEmbeddings from langchain.retrievers import DocArrayRetriever # define document schema class MyDoc(BaseDoc): description: str description_embedding: NdArray[1536] embeddings = OpenAIEmbeddings() # create documents descriptions = ["description 1", "description 2"] desc_embeddings = embeddings.embed_documents(texts=descriptions) docs = DocList[MyDoc]( [ MyDoc(description=desc, description_embedding=embedding) for desc, embedding in zip(descriptions, desc_embeddings) ] ) # initialize document index with data db = InMemoryExactNNIndex[MyDoc](docs) # create a retriever retriever = DocArrayRetriever( index=db, embeddings=embeddings, search_field="description_embedding", content_field="description", ) # find the relevant document doc = retriever.get_relevant_documents("action movies") print(doc) ``` #### Who can review? @dev2049 --------- Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
2023-06-17 16:09:33 +00:00
" )\n",
" for i in range(100)\n",
" ]\n",
")\n",
"# optionally, you can create a filter query\n",
"filter_query = rest.Filter(\n",
" must=[\n",
" rest.FieldCondition(\n",
" key=\"year\",\n",
" range=rest.Range(\n",
" gte=10,\n",
" lt=90,\n",
" ),\n",
" )\n",
" ]\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "a6dd6460-7175-48ee-8cfb-9a0abf35ec13",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[Document(page_content='My document 80', metadata={'id': '97465f98d0810f1f330e4ecc29b13d20', 'year': 80, 'color': 'blue'})]\n"
]
}
],
"source": [
"# create a retriever\n",
"retriever = DocArrayRetriever(\n",
Fix `make docs_build` and related scripts (#7276) **Description: a description of the change** Fixed `make docs_build` and related scripts which caused errors. There are several changes. First, I made the build of the documentation and the API Reference into two separate commands. This is because it takes less time to build. The commands for documents are `make docs_build`, `make docs_clean`, and `make docs_linkcheck`. The commands for API Reference are `make api_docs_build`, `api_docs_clean`, and `api_docs_linkcheck`. It looked like `docs/.local_build.sh` could be used to build the documentation, so I used that. Since `.local_build.sh` was also building API Rerefence internally, I removed that process. `.local_build.sh` also added some Bash options to stop in error or so. Futher more added `cd "${SCRIPT_DIR}"` at the beginning so that the script will work no matter which directory it is executed in. `docs/api_reference/api_reference.rst` is removed, because which is generated by `docs/api_reference/create_api_rst.py`, and added it to .gitignore. Finally, the description of CONTRIBUTING.md was modified. **Issue: the issue # it fixes (if applicable)** https://github.com/hwchase17/langchain/issues/6413 **Dependencies: any dependencies required for this change** `nbdoc` was missing in group docs so it was added. I installed it with the `poetry add --group docs nbdoc` command. I am concerned if any modifications are needed to poetry.lock. I would greatly appreciate it if you could pay close attention to this file during the review. **Tag maintainer** - General / Misc / if you don't know who to tag: @baskaryan If this PR needs any additional changes, I'll be happy to make them! --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 02:05:14 +00:00
" index=db,\n",
" embeddings=embeddings,\n",
" search_field=\"title_embedding\",\n",
" content_field=\"title\",\n",
DocArray as a Retriever (#6031) ## DocArray as a Retriever [DocArray](https://github.com/docarray/docarray) is an open-source tool for managing your multi-modal data. It offers flexibility to store and search through your data using various document index backends. This PR introduces `DocArrayRetriever` - which works with any available backend and serves as a retriever for Langchain apps. Also, I added 2 notebooks: DocArray Backends - intro to all 5 currently supported backends, how to initialize, index, and use them as a retriever DocArray Usage - showcasing what additional search parameters you can pass to create versatile retrievers Example: ```python from docarray.index import InMemoryExactNNIndex from docarray import BaseDoc, DocList from docarray.typing import NdArray from langchain.embeddings.openai import OpenAIEmbeddings from langchain.retrievers import DocArrayRetriever # define document schema class MyDoc(BaseDoc): description: str description_embedding: NdArray[1536] embeddings = OpenAIEmbeddings() # create documents descriptions = ["description 1", "description 2"] desc_embeddings = embeddings.embed_documents(texts=descriptions) docs = DocList[MyDoc]( [ MyDoc(description=desc, description_embedding=embedding) for desc, embedding in zip(descriptions, desc_embeddings) ] ) # initialize document index with data db = InMemoryExactNNIndex[MyDoc](docs) # create a retriever retriever = DocArrayRetriever( index=db, embeddings=embeddings, search_field="description_embedding", content_field="description", ) # find the relevant document doc = retriever.get_relevant_documents("action movies") print(doc) ``` #### Who can review? @dev2049 --------- Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
2023-06-17 16:09:33 +00:00
" filters=filter_query,\n",
")\n",
"\n",
"# find the relevant document\n",
Fix `make docs_build` and related scripts (#7276) **Description: a description of the change** Fixed `make docs_build` and related scripts which caused errors. There are several changes. First, I made the build of the documentation and the API Reference into two separate commands. This is because it takes less time to build. The commands for documents are `make docs_build`, `make docs_clean`, and `make docs_linkcheck`. The commands for API Reference are `make api_docs_build`, `api_docs_clean`, and `api_docs_linkcheck`. It looked like `docs/.local_build.sh` could be used to build the documentation, so I used that. Since `.local_build.sh` was also building API Rerefence internally, I removed that process. `.local_build.sh` also added some Bash options to stop in error or so. Futher more added `cd "${SCRIPT_DIR}"` at the beginning so that the script will work no matter which directory it is executed in. `docs/api_reference/api_reference.rst` is removed, because which is generated by `docs/api_reference/create_api_rst.py`, and added it to .gitignore. Finally, the description of CONTRIBUTING.md was modified. **Issue: the issue # it fixes (if applicable)** https://github.com/hwchase17/langchain/issues/6413 **Dependencies: any dependencies required for this change** `nbdoc` was missing in group docs so it was added. I installed it with the `poetry add --group docs nbdoc` command. I am concerned if any modifications are needed to poetry.lock. I would greatly appreciate it if you could pay close attention to this file during the review. **Tag maintainer** - General / Misc / if you don't know who to tag: @baskaryan If this PR needs any additional changes, I'll be happy to make them! --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 02:05:14 +00:00
"doc = retriever.get_relevant_documents(\"some query\")\n",
DocArray as a Retriever (#6031) ## DocArray as a Retriever [DocArray](https://github.com/docarray/docarray) is an open-source tool for managing your multi-modal data. It offers flexibility to store and search through your data using various document index backends. This PR introduces `DocArrayRetriever` - which works with any available backend and serves as a retriever for Langchain apps. Also, I added 2 notebooks: DocArray Backends - intro to all 5 currently supported backends, how to initialize, index, and use them as a retriever DocArray Usage - showcasing what additional search parameters you can pass to create versatile retrievers Example: ```python from docarray.index import InMemoryExactNNIndex from docarray import BaseDoc, DocList from docarray.typing import NdArray from langchain.embeddings.openai import OpenAIEmbeddings from langchain.retrievers import DocArrayRetriever # define document schema class MyDoc(BaseDoc): description: str description_embedding: NdArray[1536] embeddings = OpenAIEmbeddings() # create documents descriptions = ["description 1", "description 2"] desc_embeddings = embeddings.embed_documents(texts=descriptions) docs = DocList[MyDoc]( [ MyDoc(description=desc, description_embedding=embedding) for desc, embedding in zip(descriptions, desc_embeddings) ] ) # initialize document index with data db = InMemoryExactNNIndex[MyDoc](docs) # create a retriever retriever = DocArrayRetriever( index=db, embeddings=embeddings, search_field="description_embedding", content_field="description", ) # find the relevant document doc = retriever.get_relevant_documents("action movies") print(doc) ``` #### Who can review? @dev2049 --------- Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
2023-06-17 16:09:33 +00:00
"print(doc)"
]
},
{
"cell_type": "markdown",
"id": "3afb65b0-c620-411a-855f-1aa81481bdbb",
"metadata": {},
"source": [
"# Movie Retrieval using HnswDocumentIndex"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "07b71d96-381e-4965-b525-af9f7cc5f86c",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"movies = [\n",
" {\n",
" \"title\": \"Inception\",\n",
" \"description\": \"A thief who steals corporate secrets through the use of dream-sharing technology is given the task of planting an idea into the mind of a CEO.\",\n",
" \"director\": \"Christopher Nolan\",\n",
" \"rating\": 8.8,\n",
" },\n",
" {\n",
" \"title\": \"The Dark Knight\",\n",
" \"description\": \"When the menace known as the Joker wreaks havoc and chaos on the people of Gotham, Batman must accept one of the greatest psychological and physical tests of his ability to fight injustice.\",\n",
" \"director\": \"Christopher Nolan\",\n",
" \"rating\": 9.0,\n",
" },\n",
" {\n",
" \"title\": \"Interstellar\",\n",
" \"description\": \"Interstellar explores the boundaries of human exploration as a group of astronauts venture through a wormhole in space. In their quest to ensure the survival of humanity, they confront the vastness of space-time and grapple with love and sacrifice.\",\n",
" \"director\": \"Christopher Nolan\",\n",
" \"rating\": 8.6,\n",
" },\n",
" {\n",
" \"title\": \"Pulp Fiction\",\n",
" \"description\": \"The lives of two mob hitmen, a boxer, a gangster's wife, and a pair of diner bandits intertwine in four tales of violence and redemption.\",\n",
" \"director\": \"Quentin Tarantino\",\n",
" \"rating\": 8.9,\n",
" },\n",
" {\n",
" \"title\": \"Reservoir Dogs\",\n",
" \"description\": \"When a simple jewelry heist goes horribly wrong, the surviving criminals begin to suspect that one of them is a police informant.\",\n",
" \"director\": \"Quentin Tarantino\",\n",
" \"rating\": 8.3,\n",
" },\n",
" {\n",
" \"title\": \"The Godfather\",\n",
" \"description\": \"An aging patriarch of an organized crime dynasty transfers control of his empire to his reluctant son.\",\n",
" \"director\": \"Francis Ford Coppola\",\n",
" \"rating\": 9.2,\n",
" },\n",
Fix `make docs_build` and related scripts (#7276) **Description: a description of the change** Fixed `make docs_build` and related scripts which caused errors. There are several changes. First, I made the build of the documentation and the API Reference into two separate commands. This is because it takes less time to build. The commands for documents are `make docs_build`, `make docs_clean`, and `make docs_linkcheck`. The commands for API Reference are `make api_docs_build`, `api_docs_clean`, and `api_docs_linkcheck`. It looked like `docs/.local_build.sh` could be used to build the documentation, so I used that. Since `.local_build.sh` was also building API Rerefence internally, I removed that process. `.local_build.sh` also added some Bash options to stop in error or so. Futher more added `cd "${SCRIPT_DIR}"` at the beginning so that the script will work no matter which directory it is executed in. `docs/api_reference/api_reference.rst` is removed, because which is generated by `docs/api_reference/create_api_rst.py`, and added it to .gitignore. Finally, the description of CONTRIBUTING.md was modified. **Issue: the issue # it fixes (if applicable)** https://github.com/hwchase17/langchain/issues/6413 **Dependencies: any dependencies required for this change** `nbdoc` was missing in group docs so it was added. I installed it with the `poetry add --group docs nbdoc` command. I am concerned if any modifications are needed to poetry.lock. I would greatly appreciate it if you could pay close attention to this file during the review. **Tag maintainer** - General / Misc / if you don't know who to tag: @baskaryan If this PR needs any additional changes, I'll be happy to make them! --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 02:05:14 +00:00
"]"
DocArray as a Retriever (#6031) ## DocArray as a Retriever [DocArray](https://github.com/docarray/docarray) is an open-source tool for managing your multi-modal data. It offers flexibility to store and search through your data using various document index backends. This PR introduces `DocArrayRetriever` - which works with any available backend and serves as a retriever for Langchain apps. Also, I added 2 notebooks: DocArray Backends - intro to all 5 currently supported backends, how to initialize, index, and use them as a retriever DocArray Usage - showcasing what additional search parameters you can pass to create versatile retrievers Example: ```python from docarray.index import InMemoryExactNNIndex from docarray import BaseDoc, DocList from docarray.typing import NdArray from langchain.embeddings.openai import OpenAIEmbeddings from langchain.retrievers import DocArrayRetriever # define document schema class MyDoc(BaseDoc): description: str description_embedding: NdArray[1536] embeddings = OpenAIEmbeddings() # create documents descriptions = ["description 1", "description 2"] desc_embeddings = embeddings.embed_documents(texts=descriptions) docs = DocList[MyDoc]( [ MyDoc(description=desc, description_embedding=embedding) for desc, embedding in zip(descriptions, desc_embeddings) ] ) # initialize document index with data db = InMemoryExactNNIndex[MyDoc](docs) # create a retriever retriever = DocArrayRetriever( index=db, embeddings=embeddings, search_field="description_embedding", content_field="description", ) # find the relevant document doc = retriever.get_relevant_documents("action movies") print(doc) ``` #### Who can review? @dev2049 --------- Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
2023-06-17 16:09:33 +00:00
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "1860edfb-936d-4cd8-a167-e8f9c4617709",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdin",
"output_type": "stream",
"text": [
"OpenAI API Key: ········\n"
]
}
],
"source": [
"import getpass\n",
Fix `make docs_build` and related scripts (#7276) **Description: a description of the change** Fixed `make docs_build` and related scripts which caused errors. There are several changes. First, I made the build of the documentation and the API Reference into two separate commands. This is because it takes less time to build. The commands for documents are `make docs_build`, `make docs_clean`, and `make docs_linkcheck`. The commands for API Reference are `make api_docs_build`, `api_docs_clean`, and `api_docs_linkcheck`. It looked like `docs/.local_build.sh` could be used to build the documentation, so I used that. Since `.local_build.sh` was also building API Rerefence internally, I removed that process. `.local_build.sh` also added some Bash options to stop in error or so. Futher more added `cd "${SCRIPT_DIR}"` at the beginning so that the script will work no matter which directory it is executed in. `docs/api_reference/api_reference.rst` is removed, because which is generated by `docs/api_reference/create_api_rst.py`, and added it to .gitignore. Finally, the description of CONTRIBUTING.md was modified. **Issue: the issue # it fixes (if applicable)** https://github.com/hwchase17/langchain/issues/6413 **Dependencies: any dependencies required for this change** `nbdoc` was missing in group docs so it was added. I installed it with the `poetry add --group docs nbdoc` command. I am concerned if any modifications are needed to poetry.lock. I would greatly appreciate it if you could pay close attention to this file during the review. **Tag maintainer** - General / Misc / if you don't know who to tag: @baskaryan If this PR needs any additional changes, I'll be happy to make them! --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 02:05:14 +00:00
"import os\n",
DocArray as a Retriever (#6031) ## DocArray as a Retriever [DocArray](https://github.com/docarray/docarray) is an open-source tool for managing your multi-modal data. It offers flexibility to store and search through your data using various document index backends. This PR introduces `DocArrayRetriever` - which works with any available backend and serves as a retriever for Langchain apps. Also, I added 2 notebooks: DocArray Backends - intro to all 5 currently supported backends, how to initialize, index, and use them as a retriever DocArray Usage - showcasing what additional search parameters you can pass to create versatile retrievers Example: ```python from docarray.index import InMemoryExactNNIndex from docarray import BaseDoc, DocList from docarray.typing import NdArray from langchain.embeddings.openai import OpenAIEmbeddings from langchain.retrievers import DocArrayRetriever # define document schema class MyDoc(BaseDoc): description: str description_embedding: NdArray[1536] embeddings = OpenAIEmbeddings() # create documents descriptions = ["description 1", "description 2"] desc_embeddings = embeddings.embed_documents(texts=descriptions) docs = DocList[MyDoc]( [ MyDoc(description=desc, description_embedding=embedding) for desc, embedding in zip(descriptions, desc_embeddings) ] ) # initialize document index with data db = InMemoryExactNNIndex[MyDoc](docs) # create a retriever retriever = DocArrayRetriever( index=db, embeddings=embeddings, search_field="description_embedding", content_field="description", ) # find the relevant document doc = retriever.get_relevant_documents("action movies") print(doc) ``` #### Who can review? @dev2049 --------- Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
2023-06-17 16:09:33 +00:00
"\n",
Fix `make docs_build` and related scripts (#7276) **Description: a description of the change** Fixed `make docs_build` and related scripts which caused errors. There are several changes. First, I made the build of the documentation and the API Reference into two separate commands. This is because it takes less time to build. The commands for documents are `make docs_build`, `make docs_clean`, and `make docs_linkcheck`. The commands for API Reference are `make api_docs_build`, `api_docs_clean`, and `api_docs_linkcheck`. It looked like `docs/.local_build.sh` could be used to build the documentation, so I used that. Since `.local_build.sh` was also building API Rerefence internally, I removed that process. `.local_build.sh` also added some Bash options to stop in error or so. Futher more added `cd "${SCRIPT_DIR}"` at the beginning so that the script will work no matter which directory it is executed in. `docs/api_reference/api_reference.rst` is removed, because which is generated by `docs/api_reference/create_api_rst.py`, and added it to .gitignore. Finally, the description of CONTRIBUTING.md was modified. **Issue: the issue # it fixes (if applicable)** https://github.com/hwchase17/langchain/issues/6413 **Dependencies: any dependencies required for this change** `nbdoc` was missing in group docs so it was added. I installed it with the `poetry add --group docs nbdoc` command. I am concerned if any modifications are needed to poetry.lock. I would greatly appreciate it if you could pay close attention to this file during the review. **Tag maintainer** - General / Misc / if you don't know who to tag: @baskaryan If this PR needs any additional changes, I'll be happy to make them! --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 02:05:14 +00:00
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")"
DocArray as a Retriever (#6031) ## DocArray as a Retriever [DocArray](https://github.com/docarray/docarray) is an open-source tool for managing your multi-modal data. It offers flexibility to store and search through your data using various document index backends. This PR introduces `DocArrayRetriever` - which works with any available backend and serves as a retriever for Langchain apps. Also, I added 2 notebooks: DocArray Backends - intro to all 5 currently supported backends, how to initialize, index, and use them as a retriever DocArray Usage - showcasing what additional search parameters you can pass to create versatile retrievers Example: ```python from docarray.index import InMemoryExactNNIndex from docarray import BaseDoc, DocList from docarray.typing import NdArray from langchain.embeddings.openai import OpenAIEmbeddings from langchain.retrievers import DocArrayRetriever # define document schema class MyDoc(BaseDoc): description: str description_embedding: NdArray[1536] embeddings = OpenAIEmbeddings() # create documents descriptions = ["description 1", "description 2"] desc_embeddings = embeddings.embed_documents(texts=descriptions) docs = DocList[MyDoc]( [ MyDoc(description=desc, description_embedding=embedding) for desc, embedding in zip(descriptions, desc_embeddings) ] ) # initialize document index with data db = InMemoryExactNNIndex[MyDoc](docs) # create a retriever retriever = DocArrayRetriever( index=db, embeddings=embeddings, search_field="description_embedding", content_field="description", ) # find the relevant document doc = retriever.get_relevant_documents("action movies") print(doc) ``` #### Who can review? @dev2049 --------- Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
2023-06-17 16:09:33 +00:00
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "0538541d-26ea-4323-96b9-47768c75dcd8",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from docarray import BaseDoc, DocList\n",
"from docarray.typing import NdArray\n",
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"\n",
Fix `make docs_build` and related scripts (#7276) **Description: a description of the change** Fixed `make docs_build` and related scripts which caused errors. There are several changes. First, I made the build of the documentation and the API Reference into two separate commands. This is because it takes less time to build. The commands for documents are `make docs_build`, `make docs_clean`, and `make docs_linkcheck`. The commands for API Reference are `make api_docs_build`, `api_docs_clean`, and `api_docs_linkcheck`. It looked like `docs/.local_build.sh` could be used to build the documentation, so I used that. Since `.local_build.sh` was also building API Rerefence internally, I removed that process. `.local_build.sh` also added some Bash options to stop in error or so. Futher more added `cd "${SCRIPT_DIR}"` at the beginning so that the script will work no matter which directory it is executed in. `docs/api_reference/api_reference.rst` is removed, because which is generated by `docs/api_reference/create_api_rst.py`, and added it to .gitignore. Finally, the description of CONTRIBUTING.md was modified. **Issue: the issue # it fixes (if applicable)** https://github.com/hwchase17/langchain/issues/6413 **Dependencies: any dependencies required for this change** `nbdoc` was missing in group docs so it was added. I installed it with the `poetry add --group docs nbdoc` command. I am concerned if any modifications are needed to poetry.lock. I would greatly appreciate it if you could pay close attention to this file during the review. **Tag maintainer** - General / Misc / if you don't know who to tag: @baskaryan If this PR needs any additional changes, I'll be happy to make them! --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 02:05:14 +00:00
"\n",
DocArray as a Retriever (#6031) ## DocArray as a Retriever [DocArray](https://github.com/docarray/docarray) is an open-source tool for managing your multi-modal data. It offers flexibility to store and search through your data using various document index backends. This PR introduces `DocArrayRetriever` - which works with any available backend and serves as a retriever for Langchain apps. Also, I added 2 notebooks: DocArray Backends - intro to all 5 currently supported backends, how to initialize, index, and use them as a retriever DocArray Usage - showcasing what additional search parameters you can pass to create versatile retrievers Example: ```python from docarray.index import InMemoryExactNNIndex from docarray import BaseDoc, DocList from docarray.typing import NdArray from langchain.embeddings.openai import OpenAIEmbeddings from langchain.retrievers import DocArrayRetriever # define document schema class MyDoc(BaseDoc): description: str description_embedding: NdArray[1536] embeddings = OpenAIEmbeddings() # create documents descriptions = ["description 1", "description 2"] desc_embeddings = embeddings.embed_documents(texts=descriptions) docs = DocList[MyDoc]( [ MyDoc(description=desc, description_embedding=embedding) for desc, embedding in zip(descriptions, desc_embeddings) ] ) # initialize document index with data db = InMemoryExactNNIndex[MyDoc](docs) # create a retriever retriever = DocArrayRetriever( index=db, embeddings=embeddings, search_field="description_embedding", content_field="description", ) # find the relevant document doc = retriever.get_relevant_documents("action movies") print(doc) ``` #### Who can review? @dev2049 --------- Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
2023-06-17 16:09:33 +00:00
"# define schema for your movie documents\n",
"class MyDoc(BaseDoc):\n",
" title: str\n",
" description: str\n",
" description_embedding: NdArray[1536]\n",
" rating: float\n",
" director: str\n",
Fix `make docs_build` and related scripts (#7276) **Description: a description of the change** Fixed `make docs_build` and related scripts which caused errors. There are several changes. First, I made the build of the documentation and the API Reference into two separate commands. This is because it takes less time to build. The commands for documents are `make docs_build`, `make docs_clean`, and `make docs_linkcheck`. The commands for API Reference are `make api_docs_build`, `api_docs_clean`, and `api_docs_linkcheck`. It looked like `docs/.local_build.sh` could be used to build the documentation, so I used that. Since `.local_build.sh` was also building API Rerefence internally, I removed that process. `.local_build.sh` also added some Bash options to stop in error or so. Futher more added `cd "${SCRIPT_DIR}"` at the beginning so that the script will work no matter which directory it is executed in. `docs/api_reference/api_reference.rst` is removed, because which is generated by `docs/api_reference/create_api_rst.py`, and added it to .gitignore. Finally, the description of CONTRIBUTING.md was modified. **Issue: the issue # it fixes (if applicable)** https://github.com/hwchase17/langchain/issues/6413 **Dependencies: any dependencies required for this change** `nbdoc` was missing in group docs so it was added. I installed it with the `poetry add --group docs nbdoc` command. I am concerned if any modifications are needed to poetry.lock. I would greatly appreciate it if you could pay close attention to this file during the review. **Tag maintainer** - General / Misc / if you don't know who to tag: @baskaryan If this PR needs any additional changes, I'll be happy to make them! --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 02:05:14 +00:00
"\n",
DocArray as a Retriever (#6031) ## DocArray as a Retriever [DocArray](https://github.com/docarray/docarray) is an open-source tool for managing your multi-modal data. It offers flexibility to store and search through your data using various document index backends. This PR introduces `DocArrayRetriever` - which works with any available backend and serves as a retriever for Langchain apps. Also, I added 2 notebooks: DocArray Backends - intro to all 5 currently supported backends, how to initialize, index, and use them as a retriever DocArray Usage - showcasing what additional search parameters you can pass to create versatile retrievers Example: ```python from docarray.index import InMemoryExactNNIndex from docarray import BaseDoc, DocList from docarray.typing import NdArray from langchain.embeddings.openai import OpenAIEmbeddings from langchain.retrievers import DocArrayRetriever # define document schema class MyDoc(BaseDoc): description: str description_embedding: NdArray[1536] embeddings = OpenAIEmbeddings() # create documents descriptions = ["description 1", "description 2"] desc_embeddings = embeddings.embed_documents(texts=descriptions) docs = DocList[MyDoc]( [ MyDoc(description=desc, description_embedding=embedding) for desc, embedding in zip(descriptions, desc_embeddings) ] ) # initialize document index with data db = InMemoryExactNNIndex[MyDoc](docs) # create a retriever retriever = DocArrayRetriever( index=db, embeddings=embeddings, search_field="description_embedding", content_field="description", ) # find the relevant document doc = retriever.get_relevant_documents("action movies") print(doc) ``` #### Who can review? @dev2049 --------- Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
2023-06-17 16:09:33 +00:00
"\n",
"embeddings = OpenAIEmbeddings()\n",
"\n",
"\n",
"# get \"description\" embeddings, and create documents\n",
"docs = DocList[MyDoc](\n",
" [\n",
" MyDoc(\n",
" description_embedding=embeddings.embed_query(movie[\"description\"]), **movie\n",
" )\n",
" for movie in movies\n",
" ]\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "f5ae1b41-0372-47ea-89bb-c6ad968a2919",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from docarray.index import HnswDocumentIndex\n",
"\n",
"# initialize the index\n",
Fix `make docs_build` and related scripts (#7276) **Description: a description of the change** Fixed `make docs_build` and related scripts which caused errors. There are several changes. First, I made the build of the documentation and the API Reference into two separate commands. This is because it takes less time to build. The commands for documents are `make docs_build`, `make docs_clean`, and `make docs_linkcheck`. The commands for API Reference are `make api_docs_build`, `api_docs_clean`, and `api_docs_linkcheck`. It looked like `docs/.local_build.sh` could be used to build the documentation, so I used that. Since `.local_build.sh` was also building API Rerefence internally, I removed that process. `.local_build.sh` also added some Bash options to stop in error or so. Futher more added `cd "${SCRIPT_DIR}"` at the beginning so that the script will work no matter which directory it is executed in. `docs/api_reference/api_reference.rst` is removed, because which is generated by `docs/api_reference/create_api_rst.py`, and added it to .gitignore. Finally, the description of CONTRIBUTING.md was modified. **Issue: the issue # it fixes (if applicable)** https://github.com/hwchase17/langchain/issues/6413 **Dependencies: any dependencies required for this change** `nbdoc` was missing in group docs so it was added. I installed it with the `poetry add --group docs nbdoc` command. I am concerned if any modifications are needed to poetry.lock. I would greatly appreciate it if you could pay close attention to this file during the review. **Tag maintainer** - General / Misc / if you don't know who to tag: @baskaryan If this PR needs any additional changes, I'll be happy to make them! --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 02:05:14 +00:00
"db = HnswDocumentIndex[MyDoc](work_dir=\"movie_search\")\n",
DocArray as a Retriever (#6031) ## DocArray as a Retriever [DocArray](https://github.com/docarray/docarray) is an open-source tool for managing your multi-modal data. It offers flexibility to store and search through your data using various document index backends. This PR introduces `DocArrayRetriever` - which works with any available backend and serves as a retriever for Langchain apps. Also, I added 2 notebooks: DocArray Backends - intro to all 5 currently supported backends, how to initialize, index, and use them as a retriever DocArray Usage - showcasing what additional search parameters you can pass to create versatile retrievers Example: ```python from docarray.index import InMemoryExactNNIndex from docarray import BaseDoc, DocList from docarray.typing import NdArray from langchain.embeddings.openai import OpenAIEmbeddings from langchain.retrievers import DocArrayRetriever # define document schema class MyDoc(BaseDoc): description: str description_embedding: NdArray[1536] embeddings = OpenAIEmbeddings() # create documents descriptions = ["description 1", "description 2"] desc_embeddings = embeddings.embed_documents(texts=descriptions) docs = DocList[MyDoc]( [ MyDoc(description=desc, description_embedding=embedding) for desc, embedding in zip(descriptions, desc_embeddings) ] ) # initialize document index with data db = InMemoryExactNNIndex[MyDoc](docs) # create a retriever retriever = DocArrayRetriever( index=db, embeddings=embeddings, search_field="description_embedding", content_field="description", ) # find the relevant document doc = retriever.get_relevant_documents("action movies") print(doc) ``` #### Who can review? @dev2049 --------- Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
2023-06-17 16:09:33 +00:00
"\n",
"# add data\n",
"db.index(docs)"
]
},
{
"cell_type": "markdown",
"id": "9ca3f91b-ed11-490b-b60a-0d1d9b50a5b2",
"metadata": {
"tags": []
},
"source": [
"## Normal Retriever"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "efdb5cbf-218e-48a6-af0f-25b7a510e343",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[Document(page_content='A thief who steals corporate secrets through the use of dream-sharing technology is given the task of planting an idea into the mind of a CEO.', metadata={'id': 'f1649d5b6776db04fec9a116bbb6bbe5', 'title': 'Inception', 'rating': 8.8, 'director': 'Christopher Nolan'})]\n"
]
}
],
"source": [
"from langchain.retrievers import DocArrayRetriever\n",
"\n",
"# create a retriever\n",
"retriever = DocArrayRetriever(\n",
Fix `make docs_build` and related scripts (#7276) **Description: a description of the change** Fixed `make docs_build` and related scripts which caused errors. There are several changes. First, I made the build of the documentation and the API Reference into two separate commands. This is because it takes less time to build. The commands for documents are `make docs_build`, `make docs_clean`, and `make docs_linkcheck`. The commands for API Reference are `make api_docs_build`, `api_docs_clean`, and `api_docs_linkcheck`. It looked like `docs/.local_build.sh` could be used to build the documentation, so I used that. Since `.local_build.sh` was also building API Rerefence internally, I removed that process. `.local_build.sh` also added some Bash options to stop in error or so. Futher more added `cd "${SCRIPT_DIR}"` at the beginning so that the script will work no matter which directory it is executed in. `docs/api_reference/api_reference.rst` is removed, because which is generated by `docs/api_reference/create_api_rst.py`, and added it to .gitignore. Finally, the description of CONTRIBUTING.md was modified. **Issue: the issue # it fixes (if applicable)** https://github.com/hwchase17/langchain/issues/6413 **Dependencies: any dependencies required for this change** `nbdoc` was missing in group docs so it was added. I installed it with the `poetry add --group docs nbdoc` command. I am concerned if any modifications are needed to poetry.lock. I would greatly appreciate it if you could pay close attention to this file during the review. **Tag maintainer** - General / Misc / if you don't know who to tag: @baskaryan If this PR needs any additional changes, I'll be happy to make them! --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 02:05:14 +00:00
" index=db,\n",
" embeddings=embeddings,\n",
" search_field=\"description_embedding\",\n",
" content_field=\"description\",\n",
DocArray as a Retriever (#6031) ## DocArray as a Retriever [DocArray](https://github.com/docarray/docarray) is an open-source tool for managing your multi-modal data. It offers flexibility to store and search through your data using various document index backends. This PR introduces `DocArrayRetriever` - which works with any available backend and serves as a retriever for Langchain apps. Also, I added 2 notebooks: DocArray Backends - intro to all 5 currently supported backends, how to initialize, index, and use them as a retriever DocArray Usage - showcasing what additional search parameters you can pass to create versatile retrievers Example: ```python from docarray.index import InMemoryExactNNIndex from docarray import BaseDoc, DocList from docarray.typing import NdArray from langchain.embeddings.openai import OpenAIEmbeddings from langchain.retrievers import DocArrayRetriever # define document schema class MyDoc(BaseDoc): description: str description_embedding: NdArray[1536] embeddings = OpenAIEmbeddings() # create documents descriptions = ["description 1", "description 2"] desc_embeddings = embeddings.embed_documents(texts=descriptions) docs = DocList[MyDoc]( [ MyDoc(description=desc, description_embedding=embedding) for desc, embedding in zip(descriptions, desc_embeddings) ] ) # initialize document index with data db = InMemoryExactNNIndex[MyDoc](docs) # create a retriever retriever = DocArrayRetriever( index=db, embeddings=embeddings, search_field="description_embedding", content_field="description", ) # find the relevant document doc = retriever.get_relevant_documents("action movies") print(doc) ``` #### Who can review? @dev2049 --------- Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
2023-06-17 16:09:33 +00:00
")\n",
"\n",
"# find the relevant document\n",
Fix `make docs_build` and related scripts (#7276) **Description: a description of the change** Fixed `make docs_build` and related scripts which caused errors. There are several changes. First, I made the build of the documentation and the API Reference into two separate commands. This is because it takes less time to build. The commands for documents are `make docs_build`, `make docs_clean`, and `make docs_linkcheck`. The commands for API Reference are `make api_docs_build`, `api_docs_clean`, and `api_docs_linkcheck`. It looked like `docs/.local_build.sh` could be used to build the documentation, so I used that. Since `.local_build.sh` was also building API Rerefence internally, I removed that process. `.local_build.sh` also added some Bash options to stop in error or so. Futher more added `cd "${SCRIPT_DIR}"` at the beginning so that the script will work no matter which directory it is executed in. `docs/api_reference/api_reference.rst` is removed, because which is generated by `docs/api_reference/create_api_rst.py`, and added it to .gitignore. Finally, the description of CONTRIBUTING.md was modified. **Issue: the issue # it fixes (if applicable)** https://github.com/hwchase17/langchain/issues/6413 **Dependencies: any dependencies required for this change** `nbdoc` was missing in group docs so it was added. I installed it with the `poetry add --group docs nbdoc` command. I am concerned if any modifications are needed to poetry.lock. I would greatly appreciate it if you could pay close attention to this file during the review. **Tag maintainer** - General / Misc / if you don't know who to tag: @baskaryan If this PR needs any additional changes, I'll be happy to make them! --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 02:05:14 +00:00
"doc = retriever.get_relevant_documents(\"movie about dreams\")\n",
DocArray as a Retriever (#6031) ## DocArray as a Retriever [DocArray](https://github.com/docarray/docarray) is an open-source tool for managing your multi-modal data. It offers flexibility to store and search through your data using various document index backends. This PR introduces `DocArrayRetriever` - which works with any available backend and serves as a retriever for Langchain apps. Also, I added 2 notebooks: DocArray Backends - intro to all 5 currently supported backends, how to initialize, index, and use them as a retriever DocArray Usage - showcasing what additional search parameters you can pass to create versatile retrievers Example: ```python from docarray.index import InMemoryExactNNIndex from docarray import BaseDoc, DocList from docarray.typing import NdArray from langchain.embeddings.openai import OpenAIEmbeddings from langchain.retrievers import DocArrayRetriever # define document schema class MyDoc(BaseDoc): description: str description_embedding: NdArray[1536] embeddings = OpenAIEmbeddings() # create documents descriptions = ["description 1", "description 2"] desc_embeddings = embeddings.embed_documents(texts=descriptions) docs = DocList[MyDoc]( [ MyDoc(description=desc, description_embedding=embedding) for desc, embedding in zip(descriptions, desc_embeddings) ] ) # initialize document index with data db = InMemoryExactNNIndex[MyDoc](docs) # create a retriever retriever = DocArrayRetriever( index=db, embeddings=embeddings, search_field="description_embedding", content_field="description", ) # find the relevant document doc = retriever.get_relevant_documents("action movies") print(doc) ``` #### Who can review? @dev2049 --------- Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
2023-06-17 16:09:33 +00:00
"print(doc)"
]
},
{
"cell_type": "markdown",
"id": "3defa711-51df-4b48-b02a-306706cfacd0",
"metadata": {},
"source": [
"## Retriever with Filters"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "205a9fe8-13bb-4280-9485-f6973bbc6943",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[Document(page_content='Interstellar explores the boundaries of human exploration as a group of astronauts venture through a wormhole in space. In their quest to ensure the survival of humanity, they confront the vastness of space-time and grapple with love and sacrifice.', metadata={'id': 'ab704cc7ae8573dc617f9a5e25df022a', 'title': 'Interstellar', 'rating': 8.6, 'director': 'Christopher Nolan'}), Document(page_content='A thief who steals corporate secrets through the use of dream-sharing technology is given the task of planting an idea into the mind of a CEO.', metadata={'id': 'f1649d5b6776db04fec9a116bbb6bbe5', 'title': 'Inception', 'rating': 8.8, 'director': 'Christopher Nolan'})]\n"
]
}
],
"source": [
"from langchain.retrievers import DocArrayRetriever\n",
"\n",
"# create a retriever\n",
"retriever = DocArrayRetriever(\n",
Fix `make docs_build` and related scripts (#7276) **Description: a description of the change** Fixed `make docs_build` and related scripts which caused errors. There are several changes. First, I made the build of the documentation and the API Reference into two separate commands. This is because it takes less time to build. The commands for documents are `make docs_build`, `make docs_clean`, and `make docs_linkcheck`. The commands for API Reference are `make api_docs_build`, `api_docs_clean`, and `api_docs_linkcheck`. It looked like `docs/.local_build.sh` could be used to build the documentation, so I used that. Since `.local_build.sh` was also building API Rerefence internally, I removed that process. `.local_build.sh` also added some Bash options to stop in error or so. Futher more added `cd "${SCRIPT_DIR}"` at the beginning so that the script will work no matter which directory it is executed in. `docs/api_reference/api_reference.rst` is removed, because which is generated by `docs/api_reference/create_api_rst.py`, and added it to .gitignore. Finally, the description of CONTRIBUTING.md was modified. **Issue: the issue # it fixes (if applicable)** https://github.com/hwchase17/langchain/issues/6413 **Dependencies: any dependencies required for this change** `nbdoc` was missing in group docs so it was added. I installed it with the `poetry add --group docs nbdoc` command. I am concerned if any modifications are needed to poetry.lock. I would greatly appreciate it if you could pay close attention to this file during the review. **Tag maintainer** - General / Misc / if you don't know who to tag: @baskaryan If this PR needs any additional changes, I'll be happy to make them! --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 02:05:14 +00:00
" index=db,\n",
" embeddings=embeddings,\n",
" search_field=\"description_embedding\",\n",
" content_field=\"description\",\n",
" filters={\"director\": {\"$eq\": \"Christopher Nolan\"}},\n",
DocArray as a Retriever (#6031) ## DocArray as a Retriever [DocArray](https://github.com/docarray/docarray) is an open-source tool for managing your multi-modal data. It offers flexibility to store and search through your data using various document index backends. This PR introduces `DocArrayRetriever` - which works with any available backend and serves as a retriever for Langchain apps. Also, I added 2 notebooks: DocArray Backends - intro to all 5 currently supported backends, how to initialize, index, and use them as a retriever DocArray Usage - showcasing what additional search parameters you can pass to create versatile retrievers Example: ```python from docarray.index import InMemoryExactNNIndex from docarray import BaseDoc, DocList from docarray.typing import NdArray from langchain.embeddings.openai import OpenAIEmbeddings from langchain.retrievers import DocArrayRetriever # define document schema class MyDoc(BaseDoc): description: str description_embedding: NdArray[1536] embeddings = OpenAIEmbeddings() # create documents descriptions = ["description 1", "description 2"] desc_embeddings = embeddings.embed_documents(texts=descriptions) docs = DocList[MyDoc]( [ MyDoc(description=desc, description_embedding=embedding) for desc, embedding in zip(descriptions, desc_embeddings) ] ) # initialize document index with data db = InMemoryExactNNIndex[MyDoc](docs) # create a retriever retriever = DocArrayRetriever( index=db, embeddings=embeddings, search_field="description_embedding", content_field="description", ) # find the relevant document doc = retriever.get_relevant_documents("action movies") print(doc) ``` #### Who can review? @dev2049 --------- Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
2023-06-17 16:09:33 +00:00
" top_k=2,\n",
")\n",
"\n",
"# find relevant documents\n",
Fix `make docs_build` and related scripts (#7276) **Description: a description of the change** Fixed `make docs_build` and related scripts which caused errors. There are several changes. First, I made the build of the documentation and the API Reference into two separate commands. This is because it takes less time to build. The commands for documents are `make docs_build`, `make docs_clean`, and `make docs_linkcheck`. The commands for API Reference are `make api_docs_build`, `api_docs_clean`, and `api_docs_linkcheck`. It looked like `docs/.local_build.sh` could be used to build the documentation, so I used that. Since `.local_build.sh` was also building API Rerefence internally, I removed that process. `.local_build.sh` also added some Bash options to stop in error or so. Futher more added `cd "${SCRIPT_DIR}"` at the beginning so that the script will work no matter which directory it is executed in. `docs/api_reference/api_reference.rst` is removed, because which is generated by `docs/api_reference/create_api_rst.py`, and added it to .gitignore. Finally, the description of CONTRIBUTING.md was modified. **Issue: the issue # it fixes (if applicable)** https://github.com/hwchase17/langchain/issues/6413 **Dependencies: any dependencies required for this change** `nbdoc` was missing in group docs so it was added. I installed it with the `poetry add --group docs nbdoc` command. I am concerned if any modifications are needed to poetry.lock. I would greatly appreciate it if you could pay close attention to this file during the review. **Tag maintainer** - General / Misc / if you don't know who to tag: @baskaryan If this PR needs any additional changes, I'll be happy to make them! --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 02:05:14 +00:00
"docs = retriever.get_relevant_documents(\"space travel\")\n",
DocArray as a Retriever (#6031) ## DocArray as a Retriever [DocArray](https://github.com/docarray/docarray) is an open-source tool for managing your multi-modal data. It offers flexibility to store and search through your data using various document index backends. This PR introduces `DocArrayRetriever` - which works with any available backend and serves as a retriever for Langchain apps. Also, I added 2 notebooks: DocArray Backends - intro to all 5 currently supported backends, how to initialize, index, and use them as a retriever DocArray Usage - showcasing what additional search parameters you can pass to create versatile retrievers Example: ```python from docarray.index import InMemoryExactNNIndex from docarray import BaseDoc, DocList from docarray.typing import NdArray from langchain.embeddings.openai import OpenAIEmbeddings from langchain.retrievers import DocArrayRetriever # define document schema class MyDoc(BaseDoc): description: str description_embedding: NdArray[1536] embeddings = OpenAIEmbeddings() # create documents descriptions = ["description 1", "description 2"] desc_embeddings = embeddings.embed_documents(texts=descriptions) docs = DocList[MyDoc]( [ MyDoc(description=desc, description_embedding=embedding) for desc, embedding in zip(descriptions, desc_embeddings) ] ) # initialize document index with data db = InMemoryExactNNIndex[MyDoc](docs) # create a retriever retriever = DocArrayRetriever( index=db, embeddings=embeddings, search_field="description_embedding", content_field="description", ) # find the relevant document doc = retriever.get_relevant_documents("action movies") print(doc) ``` #### Who can review? @dev2049 --------- Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
2023-06-17 16:09:33 +00:00
"print(docs)"
]
},
{
"cell_type": "markdown",
"id": "fa10afa6-1554-4c2b-8afc-cff44e32d2f8",
"metadata": {},
"source": [
"## Retriever with MMR search"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "b7305599-b166-419c-8e1e-8ff7c247cce6",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[Document(page_content=\"The lives of two mob hitmen, a boxer, a gangster's wife, and a pair of diner bandits intertwine in four tales of violence and redemption.\", metadata={'id': 'e6aa313bbde514e23fbc80ab34511afd', 'title': 'Pulp Fiction', 'rating': 8.9, 'director': 'Quentin Tarantino'}), Document(page_content='A thief who steals corporate secrets through the use of dream-sharing technology is given the task of planting an idea into the mind of a CEO.', metadata={'id': 'f1649d5b6776db04fec9a116bbb6bbe5', 'title': 'Inception', 'rating': 8.8, 'director': 'Christopher Nolan'}), Document(page_content='When the menace known as the Joker wreaks havoc and chaos on the people of Gotham, Batman must accept one of the greatest psychological and physical tests of his ability to fight injustice.', metadata={'id': '91dec17d4272041b669fd113333a65f7', 'title': 'The Dark Knight', 'rating': 9.0, 'director': 'Christopher Nolan'})]\n"
]
}
],
"source": [
"from langchain.retrievers import DocArrayRetriever\n",
"\n",
"# create a retriever\n",
"retriever = DocArrayRetriever(\n",
Fix `make docs_build` and related scripts (#7276) **Description: a description of the change** Fixed `make docs_build` and related scripts which caused errors. There are several changes. First, I made the build of the documentation and the API Reference into two separate commands. This is because it takes less time to build. The commands for documents are `make docs_build`, `make docs_clean`, and `make docs_linkcheck`. The commands for API Reference are `make api_docs_build`, `api_docs_clean`, and `api_docs_linkcheck`. It looked like `docs/.local_build.sh` could be used to build the documentation, so I used that. Since `.local_build.sh` was also building API Rerefence internally, I removed that process. `.local_build.sh` also added some Bash options to stop in error or so. Futher more added `cd "${SCRIPT_DIR}"` at the beginning so that the script will work no matter which directory it is executed in. `docs/api_reference/api_reference.rst` is removed, because which is generated by `docs/api_reference/create_api_rst.py`, and added it to .gitignore. Finally, the description of CONTRIBUTING.md was modified. **Issue: the issue # it fixes (if applicable)** https://github.com/hwchase17/langchain/issues/6413 **Dependencies: any dependencies required for this change** `nbdoc` was missing in group docs so it was added. I installed it with the `poetry add --group docs nbdoc` command. I am concerned if any modifications are needed to poetry.lock. I would greatly appreciate it if you could pay close attention to this file during the review. **Tag maintainer** - General / Misc / if you don't know who to tag: @baskaryan If this PR needs any additional changes, I'll be happy to make them! --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 02:05:14 +00:00
" index=db,\n",
" embeddings=embeddings,\n",
" search_field=\"description_embedding\",\n",
" content_field=\"description\",\n",
" filters={\"rating\": {\"$gte\": 8.7}},\n",
" search_type=\"mmr\",\n",
DocArray as a Retriever (#6031) ## DocArray as a Retriever [DocArray](https://github.com/docarray/docarray) is an open-source tool for managing your multi-modal data. It offers flexibility to store and search through your data using various document index backends. This PR introduces `DocArrayRetriever` - which works with any available backend and serves as a retriever for Langchain apps. Also, I added 2 notebooks: DocArray Backends - intro to all 5 currently supported backends, how to initialize, index, and use them as a retriever DocArray Usage - showcasing what additional search parameters you can pass to create versatile retrievers Example: ```python from docarray.index import InMemoryExactNNIndex from docarray import BaseDoc, DocList from docarray.typing import NdArray from langchain.embeddings.openai import OpenAIEmbeddings from langchain.retrievers import DocArrayRetriever # define document schema class MyDoc(BaseDoc): description: str description_embedding: NdArray[1536] embeddings = OpenAIEmbeddings() # create documents descriptions = ["description 1", "description 2"] desc_embeddings = embeddings.embed_documents(texts=descriptions) docs = DocList[MyDoc]( [ MyDoc(description=desc, description_embedding=embedding) for desc, embedding in zip(descriptions, desc_embeddings) ] ) # initialize document index with data db = InMemoryExactNNIndex[MyDoc](docs) # create a retriever retriever = DocArrayRetriever( index=db, embeddings=embeddings, search_field="description_embedding", content_field="description", ) # find the relevant document doc = retriever.get_relevant_documents("action movies") print(doc) ``` #### Who can review? @dev2049 --------- Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
2023-06-17 16:09:33 +00:00
" top_k=3,\n",
")\n",
"\n",
"# find relevant documents\n",
Fix `make docs_build` and related scripts (#7276) **Description: a description of the change** Fixed `make docs_build` and related scripts which caused errors. There are several changes. First, I made the build of the documentation and the API Reference into two separate commands. This is because it takes less time to build. The commands for documents are `make docs_build`, `make docs_clean`, and `make docs_linkcheck`. The commands for API Reference are `make api_docs_build`, `api_docs_clean`, and `api_docs_linkcheck`. It looked like `docs/.local_build.sh` could be used to build the documentation, so I used that. Since `.local_build.sh` was also building API Rerefence internally, I removed that process. `.local_build.sh` also added some Bash options to stop in error or so. Futher more added `cd "${SCRIPT_DIR}"` at the beginning so that the script will work no matter which directory it is executed in. `docs/api_reference/api_reference.rst` is removed, because which is generated by `docs/api_reference/create_api_rst.py`, and added it to .gitignore. Finally, the description of CONTRIBUTING.md was modified. **Issue: the issue # it fixes (if applicable)** https://github.com/hwchase17/langchain/issues/6413 **Dependencies: any dependencies required for this change** `nbdoc` was missing in group docs so it was added. I installed it with the `poetry add --group docs nbdoc` command. I am concerned if any modifications are needed to poetry.lock. I would greatly appreciate it if you could pay close attention to this file during the review. **Tag maintainer** - General / Misc / if you don't know who to tag: @baskaryan If this PR needs any additional changes, I'll be happy to make them! --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 02:05:14 +00:00
"docs = retriever.get_relevant_documents(\"action movies\")\n",
DocArray as a Retriever (#6031) ## DocArray as a Retriever [DocArray](https://github.com/docarray/docarray) is an open-source tool for managing your multi-modal data. It offers flexibility to store and search through your data using various document index backends. This PR introduces `DocArrayRetriever` - which works with any available backend and serves as a retriever for Langchain apps. Also, I added 2 notebooks: DocArray Backends - intro to all 5 currently supported backends, how to initialize, index, and use them as a retriever DocArray Usage - showcasing what additional search parameters you can pass to create versatile retrievers Example: ```python from docarray.index import InMemoryExactNNIndex from docarray import BaseDoc, DocList from docarray.typing import NdArray from langchain.embeddings.openai import OpenAIEmbeddings from langchain.retrievers import DocArrayRetriever # define document schema class MyDoc(BaseDoc): description: str description_embedding: NdArray[1536] embeddings = OpenAIEmbeddings() # create documents descriptions = ["description 1", "description 2"] desc_embeddings = embeddings.embed_documents(texts=descriptions) docs = DocList[MyDoc]( [ MyDoc(description=desc, description_embedding=embedding) for desc, embedding in zip(descriptions, desc_embeddings) ] ) # initialize document index with data db = InMemoryExactNNIndex[MyDoc](docs) # create a retriever retriever = DocArrayRetriever( index=db, embeddings=embeddings, search_field="description_embedding", content_field="description", ) # find the relevant document doc = retriever.get_relevant_documents("action movies") print(doc) ``` #### Who can review? @dev2049 --------- Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
2023-06-17 16:09:33 +00:00
"print(docs)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4865cf25-48af-4d60-9337-9528b9b30f28",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.17"
}
},
"nbformat": 4,
"nbformat_minor": 5
}