mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
133 lines
4.8 KiB
Python
133 lines
4.8 KiB
Python
|
"""Wrapper around YandexGPT chat models."""
|
||
|
import logging
|
||
|
from typing import Any, Dict, List, Optional, Tuple, cast
|
||
|
|
||
|
from langchain_core.callbacks import (
|
||
|
AsyncCallbackManagerForLLMRun,
|
||
|
CallbackManagerForLLMRun,
|
||
|
)
|
||
|
from langchain_core.language_models.chat_models import BaseChatModel
|
||
|
from langchain_core.messages import (
|
||
|
AIMessage,
|
||
|
BaseMessage,
|
||
|
HumanMessage,
|
||
|
SystemMessage,
|
||
|
)
|
||
|
from langchain_core.outputs import ChatGeneration, ChatResult
|
||
|
|
||
|
from langchain_community.llms.utils import enforce_stop_tokens
|
||
|
from langchain_community.llms.yandex import _BaseYandexGPT
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
def _parse_message(role: str, text: str) -> Dict:
|
||
|
return {"role": role, "text": text}
|
||
|
|
||
|
|
||
|
def _parse_chat_history(history: List[BaseMessage]) -> Tuple[List[Dict[str, str]], str]:
|
||
|
"""Parse a sequence of messages into history.
|
||
|
|
||
|
Returns:
|
||
|
A tuple of a list of parsed messages and an instruction message for the model.
|
||
|
"""
|
||
|
chat_history = []
|
||
|
instruction = ""
|
||
|
for message in history:
|
||
|
content = cast(str, message.content)
|
||
|
if isinstance(message, HumanMessage):
|
||
|
chat_history.append(_parse_message("user", content))
|
||
|
if isinstance(message, AIMessage):
|
||
|
chat_history.append(_parse_message("assistant", content))
|
||
|
if isinstance(message, SystemMessage):
|
||
|
instruction = content
|
||
|
return chat_history, instruction
|
||
|
|
||
|
|
||
|
class ChatYandexGPT(_BaseYandexGPT, BaseChatModel):
|
||
|
"""Wrapper around YandexGPT large language models.
|
||
|
|
||
|
There are two authentication options for the service account
|
||
|
with the ``ai.languageModels.user`` role:
|
||
|
- You can specify the token in a constructor parameter `iam_token`
|
||
|
or in an environment variable `YC_IAM_TOKEN`.
|
||
|
- You can specify the key in a constructor parameter `api_key`
|
||
|
or in an environment variable `YC_API_KEY`.
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
from langchain_community.chat_models import ChatYandexGPT
|
||
|
chat_model = ChatYandexGPT(iam_token="t1.9eu...")
|
||
|
|
||
|
"""
|
||
|
|
||
|
def _generate(
|
||
|
self,
|
||
|
messages: List[BaseMessage],
|
||
|
stop: Optional[List[str]] = None,
|
||
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> ChatResult:
|
||
|
"""Generate next turn in the conversation.
|
||
|
Args:
|
||
|
messages: The history of the conversation as a list of messages.
|
||
|
stop: The list of stop words (optional).
|
||
|
run_manager: The CallbackManager for LLM run, it's not used at the moment.
|
||
|
|
||
|
Returns:
|
||
|
The ChatResult that contains outputs generated by the model.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if the last message in the list is not from human.
|
||
|
"""
|
||
|
try:
|
||
|
import grpc
|
||
|
from google.protobuf.wrappers_pb2 import DoubleValue, Int64Value
|
||
|
from yandex.cloud.ai.llm.v1alpha.llm_pb2 import GenerationOptions, Message
|
||
|
from yandex.cloud.ai.llm.v1alpha.llm_service_pb2 import ChatRequest
|
||
|
from yandex.cloud.ai.llm.v1alpha.llm_service_pb2_grpc import (
|
||
|
TextGenerationServiceStub,
|
||
|
)
|
||
|
except ImportError as e:
|
||
|
raise ImportError(
|
||
|
"Please install YandexCloud SDK" " with `pip install yandexcloud`."
|
||
|
) from e
|
||
|
if not messages:
|
||
|
raise ValueError(
|
||
|
"You should provide at least one message to start the chat!"
|
||
|
)
|
||
|
message_history, instruction = _parse_chat_history(messages)
|
||
|
channel_credentials = grpc.ssl_channel_credentials()
|
||
|
channel = grpc.secure_channel(self.url, channel_credentials)
|
||
|
request = ChatRequest(
|
||
|
model=self.model_name,
|
||
|
generation_options=GenerationOptions(
|
||
|
temperature=DoubleValue(value=self.temperature),
|
||
|
max_tokens=Int64Value(value=self.max_tokens),
|
||
|
),
|
||
|
instruction_text=instruction,
|
||
|
messages=[Message(**message) for message in message_history],
|
||
|
)
|
||
|
stub = TextGenerationServiceStub(channel)
|
||
|
if self.iam_token:
|
||
|
metadata = (("authorization", f"Bearer {self.iam_token}"),)
|
||
|
else:
|
||
|
metadata = (("authorization", f"Api-Key {self.api_key}"),)
|
||
|
res = stub.Chat(request, metadata=metadata)
|
||
|
text = list(res)[0].message.text
|
||
|
text = text if stop is None else enforce_stop_tokens(text, stop)
|
||
|
message = AIMessage(content=text)
|
||
|
return ChatResult(generations=[ChatGeneration(message=message)])
|
||
|
|
||
|
async def _agenerate(
|
||
|
self,
|
||
|
messages: List[BaseMessage],
|
||
|
stop: Optional[List[str]] = None,
|
||
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> ChatResult:
|
||
|
raise NotImplementedError(
|
||
|
"""YandexGPT doesn't support async requests at the moment."""
|
||
|
)
|