mirror of
https://github.com/hwchase17/langchain
synced 2024-11-04 06:00:26 +00:00
66 lines
1.6 KiB
Markdown
66 lines
1.6 KiB
Markdown
|
# Modal
|
||
|
|
||
|
This page covers how to use the Modal ecosystem within LangChain.
|
||
|
It is broken into two parts: installation and setup, and then references to specific Modal wrappers.
|
||
|
|
||
|
## Installation and Setup
|
||
|
- Install with `pip install modal-client`
|
||
|
- Run `modal token new`
|
||
|
|
||
|
## Define your Modal Functions and Webhooks
|
||
|
|
||
|
You must include a prompt. There is a rigid response structure.
|
||
|
|
||
|
```python
|
||
|
class Item(BaseModel):
|
||
|
prompt: str
|
||
|
|
||
|
@stub.webhook(method="POST")
|
||
|
def my_webhook(item: Item):
|
||
|
return {"prompt": my_function.call(item.prompt)}
|
||
|
```
|
||
|
|
||
|
An example with GPT2:
|
||
|
|
||
|
```python
|
||
|
from pydantic import BaseModel
|
||
|
|
||
|
import modal
|
||
|
|
||
|
stub = modal.Stub("example-get-started")
|
||
|
|
||
|
volume = modal.SharedVolume().persist("gpt2_model_vol")
|
||
|
CACHE_PATH = "/root/model_cache"
|
||
|
|
||
|
@stub.function(
|
||
|
gpu="any",
|
||
|
image=modal.Image.debian_slim().pip_install(
|
||
|
"tokenizers", "transformers", "torch", "accelerate"
|
||
|
),
|
||
|
shared_volumes={CACHE_PATH: volume},
|
||
|
retries=3,
|
||
|
)
|
||
|
def run_gpt2(text: str):
|
||
|
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
||
|
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
||
|
model = GPT2LMHeadModel.from_pretrained('gpt2')
|
||
|
encoded_input = tokenizer(text, return_tensors='pt').input_ids
|
||
|
output = model.generate(encoded_input, max_length=50, do_sample=True)
|
||
|
return tokenizer.decode(output[0], skip_special_tokens=True)
|
||
|
|
||
|
class Item(BaseModel):
|
||
|
prompt: str
|
||
|
|
||
|
@stub.webhook(method="POST")
|
||
|
def get_text(item: Item):
|
||
|
return {"prompt": run_gpt2.call(item.prompt)}
|
||
|
```
|
||
|
|
||
|
## Wrappers
|
||
|
|
||
|
### LLM
|
||
|
|
||
|
There exists an Modal LLM wrapper, which you can access with
|
||
|
```python
|
||
|
from langchain.llms import Modal
|
||
|
```
|