langchain/docs/use_cases/evaluation/qa_benchmarking_pg.ipynb

375 lines
8.7 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"cell_type": "markdown",
"id": "984169ca",
"metadata": {},
"source": [
"# Question Answering Benchmarking: Paul Graham Essay\n",
"\n",
"Here we go over how to benchmark performance on a question answering task over a Paul Graham essay.\n",
"\n",
"It is highly reccomended that you do any evaluation/benchmarking with tracing enabled. See [here](https://langchain.readthedocs.io/en/latest/tracing.html) for an explanation of what tracing is and how to set it up."
]
},
{
"cell_type": "code",
2023-03-24 14:46:49 +00:00
"execution_count": 1,
"id": "3bd13ab7",
"metadata": {},
"outputs": [],
"source": [
"# Comment this out if you are NOT using tracing\n",
"import os\n",
"os.environ[\"LANGCHAIN_HANDLER\"] = \"langchain\""
]
},
{
"cell_type": "markdown",
"id": "8a16b75d",
"metadata": {},
"source": [
"## Loading the data\n",
"First, let's load the data."
]
},
{
"cell_type": "code",
2023-03-24 14:46:49 +00:00
"execution_count": 2,
"id": "5b2d5e98",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Found cached dataset json (/Users/harrisonchase/.cache/huggingface/datasets/LangChainDatasets___json/LangChainDatasets--question-answering-paul-graham-76e8f711e038d742/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51)\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
2023-03-24 14:46:49 +00:00
"model_id": "9264acfe710b4faabf060f0fcf4f7308",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/1 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from langchain.evaluation.loading import load_dataset\n",
"dataset = load_dataset(\"question-answering-paul-graham\")"
]
},
{
"cell_type": "markdown",
"id": "4ab6a716",
"metadata": {},
"source": [
"## Setting up a chain\n",
"Now we need to create some pipelines for doing question answering. Step one in that is creating an index over the data in question."
]
},
{
"cell_type": "code",
2023-03-24 14:46:49 +00:00
"execution_count": 3,
"id": "c18680b5",
"metadata": {},
"outputs": [],
"source": [
"from langchain.document_loaders import TextLoader\n",
"loader = TextLoader(\"../../modules/paul_graham_essay.txt\")"
]
},
{
"cell_type": "code",
2023-03-24 14:46:49 +00:00
"execution_count": 4,
"id": "7f0de2b3",
"metadata": {},
"outputs": [],
"source": [
"from langchain.indexes import VectorstoreIndexCreator"
]
},
{
"cell_type": "code",
2023-03-24 14:46:49 +00:00
"execution_count": 5,
"id": "ef84ff99",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running Chroma using direct local API.\n",
"Using DuckDB in-memory for database. Data will be transient.\n"
]
}
],
"source": [
"vectorstore = VectorstoreIndexCreator().from_loaders([loader]).vectorstore"
]
},
{
"cell_type": "markdown",
"id": "f0b5d8f6",
"metadata": {},
"source": [
"Now we can create a question answering chain."
]
},
{
"cell_type": "code",
2023-03-24 14:46:49 +00:00
"execution_count": 6,
"id": "8843cb0c",
"metadata": {},
"outputs": [],
"source": [
2023-03-24 14:46:49 +00:00
"from langchain.chains import RetrievalQA\n",
"from langchain.llms import OpenAI"
]
},
{
"cell_type": "code",
2023-03-24 14:46:49 +00:00
"execution_count": 7,
"id": "573719a0",
"metadata": {},
"outputs": [],
"source": [
2023-03-24 14:46:49 +00:00
"chain = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type=\"stuff\", retriever=vectorstore.as_retriever(), input_key=\"question\")"
]
},
{
"cell_type": "markdown",
"id": "53b5aa23",
"metadata": {},
"source": [
"## Make a prediction\n",
"\n",
"First, we can make predictions one datapoint at a time. Doing it at this level of granularity allows use to explore the outputs in detail, and also is a lot cheaper than running over multiple datapoints"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "3f81d951",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'question': 'What were the two main things the author worked on before college?',\n",
" 'answer': 'The two main things the author worked on before college were writing and programming.',\n",
" 'result': ' Writing and programming.'}"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chain(dataset[0])"
]
},
{
"cell_type": "markdown",
"id": "d0c16cd7",
"metadata": {},
"source": [
"## Make many predictions\n",
"Now we can make predictions"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "24b4c66e",
"metadata": {},
"outputs": [],
"source": [
"predictions = chain.apply(dataset)"
]
},
{
"cell_type": "markdown",
"id": "49d969fb",
"metadata": {},
"source": [
"## Evaluate performance\n",
"Now we can evaluate the predictions. The first thing we can do is look at them by eye."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "1d583f03",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'question': 'What were the two main things the author worked on before college?',\n",
" 'answer': 'The two main things the author worked on before college were writing and programming.',\n",
" 'result': ' Writing and programming.'}"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"predictions[0]"
]
},
{
"cell_type": "markdown",
"id": "4783344b",
"metadata": {},
"source": [
"Next, we can use a language model to score them programatically"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "d0a9341d",
"metadata": {},
"outputs": [],
"source": [
"from langchain.evaluation.qa import QAEvalChain"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "1612dec1",
"metadata": {},
"outputs": [],
"source": [
"llm = OpenAI(temperature=0)\n",
"eval_chain = QAEvalChain.from_llm(llm)\n",
"graded_outputs = eval_chain.evaluate(dataset, predictions, question_key=\"question\", prediction_key=\"result\")"
]
},
{
"cell_type": "markdown",
"id": "79587806",
"metadata": {},
"source": [
"We can add in the graded output to the `predictions` dict and then get a count of the grades."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "2a689df5",
"metadata": {},
"outputs": [],
"source": [
"for i, prediction in enumerate(predictions):\n",
" prediction['grade'] = graded_outputs[i]['text']"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "27b61215",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Counter({' CORRECT': 12, ' INCORRECT': 10})"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from collections import Counter\n",
"Counter([pred['grade'] for pred in predictions])"
]
},
{
"cell_type": "markdown",
"id": "12fe30f4",
"metadata": {},
"source": [
"We can also filter the datapoints to the incorrect examples and look at them."
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "47c692a1",
"metadata": {},
"outputs": [],
"source": [
"incorrect = [pred for pred in predictions if pred['grade'] == \" INCORRECT\"]"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "0ef976c1",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'question': 'What did the author write their dissertation on?',\n",
" 'answer': 'The author wrote their dissertation on applications of continuations.',\n",
" 'result': ' The author does not mention what their dissertation was on, so it is not known.',\n",
" 'grade': ' INCORRECT'}"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"incorrect[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7710401a",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}