mirror of
https://github.com/hwchase17/langchain
synced 2024-11-04 06:00:26 +00:00
248 lines
8.0 KiB
Python
248 lines
8.0 KiB
Python
|
from __future__ import annotations
|
||
|
|
||
|
# Standard library imports
|
||
|
from typing import Any, Dict, Iterable, List, Optional, Tuple
|
||
|
from uuid import uuid4
|
||
|
|
||
|
# LangChain imports
|
||
|
from langchain_core.documents import Document
|
||
|
from langchain_core.embeddings import Embeddings
|
||
|
from langchain_core.vectorstores import VectorStore
|
||
|
|
||
|
|
||
|
class VLite(VectorStore):
|
||
|
"""VLite is a simple and fast vector database for semantic search."""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
embedding_function: Embeddings,
|
||
|
collection: Optional[str] = None,
|
||
|
**kwargs: Any,
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.embedding_function = embedding_function
|
||
|
self.collection = collection or f"vlite_{uuid4().hex}"
|
||
|
# Third-party imports
|
||
|
try:
|
||
|
from vlite import VLite
|
||
|
except ImportError:
|
||
|
raise ImportError(
|
||
|
"Could not import vlite python package. "
|
||
|
"Please install it with `pip install vlite`."
|
||
|
)
|
||
|
self.vlite = VLite(collection=self.collection, **kwargs)
|
||
|
|
||
|
def add_texts(
|
||
|
self,
|
||
|
texts: Iterable[str],
|
||
|
metadatas: Optional[List[dict]] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> List[str]:
|
||
|
"""Run more texts through the embeddings and add to the vectorstore.
|
||
|
|
||
|
Args:
|
||
|
texts: Iterable of strings to add to the vectorstore.
|
||
|
metadatas: Optional list of metadatas associated with the texts.
|
||
|
kwargs: vectorstore specific parameters
|
||
|
|
||
|
Returns:
|
||
|
List of ids from adding the texts into the vectorstore.
|
||
|
"""
|
||
|
texts = list(texts)
|
||
|
ids = kwargs.pop("ids", [str(uuid4()) for _ in texts])
|
||
|
embeddings = self.embedding_function.embed_documents(texts)
|
||
|
if not metadatas:
|
||
|
metadatas = [{} for _ in texts]
|
||
|
data_points = [
|
||
|
{"text": text, "metadata": metadata, "id": id, "embedding": embedding}
|
||
|
for text, metadata, id, embedding in zip(texts, metadatas, ids, embeddings)
|
||
|
]
|
||
|
results = self.vlite.add(data_points)
|
||
|
return [result[0] for result in results]
|
||
|
|
||
|
def add_documents(
|
||
|
self,
|
||
|
documents: List[Document],
|
||
|
**kwargs: Any,
|
||
|
) -> List[str]:
|
||
|
"""Add a list of documents to the vectorstore.
|
||
|
|
||
|
Args:
|
||
|
documents: List of documents to add to the vectorstore.
|
||
|
kwargs: vectorstore specific parameters such as "file_path" for processing
|
||
|
directly with vlite.
|
||
|
|
||
|
Returns:
|
||
|
List of ids from adding the documents into the vectorstore.
|
||
|
"""
|
||
|
ids = kwargs.pop("ids", [str(uuid4()) for _ in documents])
|
||
|
texts = []
|
||
|
metadatas = []
|
||
|
for doc, id in zip(documents, ids):
|
||
|
if "file_path" in kwargs:
|
||
|
# Third-party imports
|
||
|
try:
|
||
|
from vlite.utils import process_file
|
||
|
except ImportError:
|
||
|
raise ImportError(
|
||
|
"Could not import vlite python package. "
|
||
|
"Please install it with `pip install vlite`."
|
||
|
)
|
||
|
processed_data = process_file(kwargs["file_path"])
|
||
|
texts.extend(processed_data)
|
||
|
metadatas.extend([doc.metadata] * len(processed_data))
|
||
|
ids.extend([f"{id}_{i}" for i in range(len(processed_data))])
|
||
|
else:
|
||
|
texts.append(doc.page_content)
|
||
|
metadatas.append(doc.metadata)
|
||
|
return self.add_texts(texts, metadatas, ids=ids)
|
||
|
|
||
|
def similarity_search(
|
||
|
self,
|
||
|
query: str,
|
||
|
k: int = 4,
|
||
|
**kwargs: Any,
|
||
|
) -> List[Document]:
|
||
|
"""Return docs most similar to query.
|
||
|
|
||
|
Args:
|
||
|
query: Text to look up documents similar to.
|
||
|
k: Number of Documents to return. Defaults to 4.
|
||
|
|
||
|
Returns:
|
||
|
List of Documents most similar to the query.
|
||
|
"""
|
||
|
docs_and_scores = self.similarity_search_with_score(query, k=k)
|
||
|
return [doc for doc, _ in docs_and_scores]
|
||
|
|
||
|
def similarity_search_with_score(
|
||
|
self,
|
||
|
query: str,
|
||
|
k: int = 4,
|
||
|
filter: Optional[Dict[str, str]] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> List[Tuple[Document, float]]:
|
||
|
"""Return docs most similar to query.
|
||
|
|
||
|
Args:
|
||
|
query: Text to look up documents similar to.
|
||
|
k: Number of Documents to return. Defaults to 4.
|
||
|
filter: Filter by metadata. Defaults to None.
|
||
|
|
||
|
Returns:
|
||
|
List of Tuples of (doc, score), where score is the similarity score.
|
||
|
"""
|
||
|
metadata = filter or {}
|
||
|
embedding = self.embedding_function.embed_query(query)
|
||
|
results = self.vlite.retrieve(
|
||
|
text=query,
|
||
|
top_k=k,
|
||
|
metadata=metadata,
|
||
|
return_scores=True,
|
||
|
embedding=embedding,
|
||
|
)
|
||
|
documents_with_scores = [
|
||
|
(Document(page_content=text, metadata=metadata), score)
|
||
|
for text, score, metadata in results
|
||
|
]
|
||
|
return documents_with_scores
|
||
|
|
||
|
def update_document(self, document_id: str, document: Document) -> None:
|
||
|
"""Update an existing document in the vectorstore."""
|
||
|
self.vlite.update(
|
||
|
document_id, text=document.page_content, metadata=document.metadata
|
||
|
)
|
||
|
|
||
|
def get(self, ids: List[str]) -> List[Document]:
|
||
|
"""Get documents by their IDs."""
|
||
|
results = self.vlite.get(ids)
|
||
|
documents = [
|
||
|
Document(page_content=text, metadata=metadata) for text, metadata in results
|
||
|
]
|
||
|
return documents
|
||
|
|
||
|
def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> Optional[bool]:
|
||
|
"""Delete by ids."""
|
||
|
if ids is not None:
|
||
|
self.vlite.delete(ids, **kwargs)
|
||
|
return True
|
||
|
return None
|
||
|
|
||
|
@classmethod
|
||
|
def from_existing_index(
|
||
|
cls,
|
||
|
embedding: Embeddings,
|
||
|
collection: str,
|
||
|
**kwargs: Any,
|
||
|
) -> VLite:
|
||
|
"""Load an existing VLite index.
|
||
|
|
||
|
Args:
|
||
|
embedding: Embedding function
|
||
|
collection: Name of the collection to load.
|
||
|
|
||
|
Returns:
|
||
|
VLite vector store.
|
||
|
"""
|
||
|
vlite = cls(embedding_function=embedding, collection=collection, **kwargs)
|
||
|
return vlite
|
||
|
|
||
|
@classmethod
|
||
|
def from_texts(
|
||
|
cls,
|
||
|
texts: List[str],
|
||
|
embedding: Embeddings,
|
||
|
metadatas: Optional[List[dict]] = None,
|
||
|
collection: Optional[str] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> VLite:
|
||
|
"""Construct VLite wrapper from raw documents.
|
||
|
|
||
|
This is a user-friendly interface that:
|
||
|
1. Embeds documents.
|
||
|
2. Adds the documents to the vectorstore.
|
||
|
|
||
|
This is intended to be a quick way to get started.
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
from langchain import VLite
|
||
|
from langchain.embeddings import OpenAIEmbeddings
|
||
|
|
||
|
embeddings = OpenAIEmbeddings()
|
||
|
vlite = VLite.from_texts(texts, embeddings)
|
||
|
"""
|
||
|
vlite = cls(embedding_function=embedding, collection=collection, **kwargs)
|
||
|
vlite.add_texts(texts, metadatas, **kwargs)
|
||
|
return vlite
|
||
|
|
||
|
@classmethod
|
||
|
def from_documents(
|
||
|
cls,
|
||
|
documents: List[Document],
|
||
|
embedding: Embeddings,
|
||
|
collection: Optional[str] = None,
|
||
|
**kwargs: Any,
|
||
|
) -> VLite:
|
||
|
"""Construct VLite wrapper from a list of documents.
|
||
|
|
||
|
This is a user-friendly interface that:
|
||
|
1. Embeds documents.
|
||
|
2. Adds the documents to the vectorstore.
|
||
|
|
||
|
This is intended to be a quick way to get started.
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
from langchain import VLite
|
||
|
from langchain.embeddings import OpenAIEmbeddings
|
||
|
|
||
|
embeddings = OpenAIEmbeddings()
|
||
|
vlite = VLite.from_documents(documents, embeddings)
|
||
|
"""
|
||
|
vlite = cls(embedding_function=embedding, collection=collection, **kwargs)
|
||
|
vlite.add_documents(documents, **kwargs)
|
||
|
return vlite
|