2023-12-11 21:53:30 +00:00
|
|
|
from __future__ import annotations
|
|
|
|
|
|
|
|
import logging
|
|
|
|
import uuid
|
|
|
|
from typing import Any, Dict, Iterable, List, Optional, Tuple, Type
|
|
|
|
|
|
|
|
import sqlalchemy
|
|
|
|
from sqlalchemy import func
|
|
|
|
from sqlalchemy.dialects.postgresql import JSON, UUID
|
|
|
|
from sqlalchemy.orm import Session, relationship
|
|
|
|
|
|
|
|
try:
|
|
|
|
from sqlalchemy.orm import declarative_base
|
|
|
|
except ImportError:
|
|
|
|
from sqlalchemy.ext.declarative import declarative_base
|
|
|
|
|
|
|
|
from langchain_core.documents import Document
|
|
|
|
from langchain_core.embeddings import Embeddings
|
|
|
|
from langchain_core.utils import get_from_dict_or_env
|
|
|
|
from langchain_core.vectorstores import VectorStore
|
|
|
|
|
|
|
|
Base = declarative_base() # type: Any
|
|
|
|
|
|
|
|
|
|
|
|
ADA_TOKEN_COUNT = 1536
|
|
|
|
_LANGCHAIN_DEFAULT_COLLECTION_NAME = "langchain"
|
|
|
|
|
|
|
|
|
|
|
|
class BaseModel(Base):
|
|
|
|
"""Base model for all SQL stores."""
|
|
|
|
|
|
|
|
__abstract__ = True
|
|
|
|
uuid = sqlalchemy.Column(UUID(as_uuid=True), primary_key=True, default=uuid.uuid4)
|
|
|
|
|
|
|
|
|
|
|
|
class CollectionStore(BaseModel):
|
|
|
|
"""Collection store."""
|
|
|
|
|
|
|
|
__tablename__ = "langchain_pg_collection"
|
|
|
|
|
|
|
|
name = sqlalchemy.Column(sqlalchemy.String)
|
|
|
|
cmetadata = sqlalchemy.Column(JSON)
|
|
|
|
|
|
|
|
embeddings = relationship(
|
|
|
|
"EmbeddingStore",
|
|
|
|
back_populates="collection",
|
|
|
|
passive_deletes=True,
|
|
|
|
)
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def get_by_name(cls, session: Session, name: str) -> Optional["CollectionStore"]:
|
|
|
|
return session.query(cls).filter(cls.name == name).first() # type: ignore
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def get_or_create(
|
|
|
|
cls,
|
|
|
|
session: Session,
|
|
|
|
name: str,
|
|
|
|
cmetadata: Optional[dict] = None,
|
|
|
|
) -> Tuple["CollectionStore", bool]:
|
|
|
|
"""
|
|
|
|
Get or create a collection.
|
|
|
|
Returns [Collection, bool] where the bool is True if the collection was created.
|
|
|
|
"""
|
|
|
|
created = False
|
|
|
|
collection = cls.get_by_name(session, name)
|
|
|
|
if collection:
|
|
|
|
return collection, created
|
|
|
|
|
|
|
|
collection = cls(name=name, cmetadata=cmetadata)
|
|
|
|
session.add(collection)
|
|
|
|
session.commit()
|
|
|
|
created = True
|
|
|
|
return collection, created
|
|
|
|
|
|
|
|
|
|
|
|
class EmbeddingStore(BaseModel):
|
|
|
|
"""Embedding store."""
|
|
|
|
|
|
|
|
__tablename__ = "langchain_pg_embedding"
|
|
|
|
|
|
|
|
collection_id = sqlalchemy.Column(
|
|
|
|
UUID(as_uuid=True),
|
|
|
|
sqlalchemy.ForeignKey(
|
|
|
|
f"{CollectionStore.__tablename__}.uuid",
|
|
|
|
ondelete="CASCADE",
|
|
|
|
),
|
|
|
|
)
|
|
|
|
collection = relationship(CollectionStore, back_populates="embeddings")
|
|
|
|
|
|
|
|
embedding = sqlalchemy.Column(sqlalchemy.ARRAY(sqlalchemy.REAL)) # type: ignore
|
|
|
|
document = sqlalchemy.Column(sqlalchemy.String, nullable=True)
|
|
|
|
cmetadata = sqlalchemy.Column(JSON, nullable=True)
|
|
|
|
|
|
|
|
# custom_id : any user defined id
|
|
|
|
custom_id = sqlalchemy.Column(sqlalchemy.String, nullable=True)
|
|
|
|
|
|
|
|
|
|
|
|
class QueryResult:
|
|
|
|
"""Result from a query."""
|
|
|
|
|
|
|
|
EmbeddingStore: EmbeddingStore
|
|
|
|
distance: float
|
|
|
|
|
|
|
|
|
|
|
|
class PGEmbedding(VectorStore):
|
|
|
|
"""`Postgres` with the `pg_embedding` extension as a vector store.
|
|
|
|
|
|
|
|
pg_embedding uses sequential scan by default. but you can create a HNSW index
|
|
|
|
using the create_hnsw_index method.
|
|
|
|
- `connection_string` is a postgres connection string.
|
|
|
|
- `embedding_function` any embedding function implementing
|
|
|
|
`langchain.embeddings.base.Embeddings` interface.
|
|
|
|
- `collection_name` is the name of the collection to use. (default: langchain)
|
|
|
|
- NOTE: This is not the name of the table, but the name of the collection.
|
|
|
|
The tables will be created when initializing the store (if not exists)
|
|
|
|
So, make sure the user has the right permissions to create tables.
|
|
|
|
- `distance_strategy` is the distance strategy to use. (default: EUCLIDEAN)
|
|
|
|
- `EUCLIDEAN` is the euclidean distance.
|
|
|
|
- `pre_delete_collection` if True, will delete the collection if it exists.
|
|
|
|
(default: False)
|
|
|
|
- Useful for testing.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
connection_string: str,
|
|
|
|
embedding_function: Embeddings,
|
|
|
|
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
|
|
|
|
collection_metadata: Optional[dict] = None,
|
|
|
|
pre_delete_collection: bool = False,
|
|
|
|
logger: Optional[logging.Logger] = None,
|
|
|
|
) -> None:
|
|
|
|
self.connection_string = connection_string
|
|
|
|
self.embedding_function = embedding_function
|
|
|
|
self.collection_name = collection_name
|
|
|
|
self.collection_metadata = collection_metadata
|
|
|
|
self.pre_delete_collection = pre_delete_collection
|
|
|
|
self.logger = logger or logging.getLogger(__name__)
|
|
|
|
self.__post_init__()
|
|
|
|
|
|
|
|
def __post_init__(
|
|
|
|
self,
|
|
|
|
) -> None:
|
|
|
|
self._conn = self.connect()
|
|
|
|
self.create_hnsw_extension()
|
|
|
|
self.create_tables_if_not_exists()
|
|
|
|
self.create_collection()
|
|
|
|
|
|
|
|
@property
|
|
|
|
def embeddings(self) -> Embeddings:
|
|
|
|
return self.embedding_function
|
|
|
|
|
|
|
|
def connect(self) -> sqlalchemy.engine.Connection:
|
|
|
|
engine = sqlalchemy.create_engine(self.connection_string)
|
|
|
|
conn = engine.connect()
|
|
|
|
return conn
|
|
|
|
|
|
|
|
def create_hnsw_extension(self) -> None:
|
|
|
|
try:
|
|
|
|
with Session(self._conn) as session:
|
|
|
|
statement = sqlalchemy.text("CREATE EXTENSION IF NOT EXISTS embedding")
|
|
|
|
session.execute(statement)
|
|
|
|
session.commit()
|
|
|
|
except Exception as e:
|
|
|
|
self.logger.exception(e)
|
|
|
|
|
|
|
|
def create_tables_if_not_exists(self) -> None:
|
|
|
|
with self._conn.begin():
|
|
|
|
Base.metadata.create_all(self._conn)
|
|
|
|
|
|
|
|
def drop_tables(self) -> None:
|
|
|
|
with self._conn.begin():
|
|
|
|
Base.metadata.drop_all(self._conn)
|
|
|
|
|
|
|
|
def create_collection(self) -> None:
|
|
|
|
if self.pre_delete_collection:
|
|
|
|
self.delete_collection()
|
|
|
|
with Session(self._conn) as session:
|
|
|
|
CollectionStore.get_or_create(
|
|
|
|
session, self.collection_name, cmetadata=self.collection_metadata
|
|
|
|
)
|
|
|
|
|
|
|
|
def create_hnsw_index(
|
|
|
|
self,
|
|
|
|
max_elements: int = 10000,
|
|
|
|
dims: int = ADA_TOKEN_COUNT,
|
|
|
|
m: int = 8,
|
|
|
|
ef_construction: int = 16,
|
|
|
|
ef_search: int = 16,
|
|
|
|
) -> None:
|
|
|
|
create_index_query = sqlalchemy.text(
|
|
|
|
"CREATE INDEX IF NOT EXISTS langchain_pg_embedding_idx "
|
|
|
|
"ON langchain_pg_embedding USING hnsw (embedding) "
|
|
|
|
"WITH ("
|
|
|
|
"maxelements = {}, "
|
|
|
|
"dims = {}, "
|
|
|
|
"m = {}, "
|
|
|
|
"efconstruction = {}, "
|
|
|
|
"efsearch = {}"
|
|
|
|
");".format(max_elements, dims, m, ef_construction, ef_search)
|
|
|
|
)
|
|
|
|
|
|
|
|
# Execute the queries
|
|
|
|
try:
|
|
|
|
with Session(self._conn) as session:
|
|
|
|
# Create the HNSW index
|
|
|
|
session.execute(create_index_query)
|
|
|
|
session.commit()
|
2024-02-10 00:13:30 +00:00
|
|
|
print("HNSW extension and index created successfully.") # noqa: T201
|
2023-12-11 21:53:30 +00:00
|
|
|
except Exception as e:
|
2024-02-10 00:13:30 +00:00
|
|
|
print(f"Failed to create HNSW extension or index: {e}") # noqa: T201
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
def delete_collection(self) -> None:
|
|
|
|
self.logger.debug("Trying to delete collection")
|
|
|
|
with Session(self._conn) as session:
|
|
|
|
collection = self.get_collection(session)
|
|
|
|
if not collection:
|
|
|
|
self.logger.warning("Collection not found")
|
|
|
|
return
|
|
|
|
session.delete(collection)
|
|
|
|
session.commit()
|
|
|
|
|
|
|
|
def get_collection(self, session: Session) -> Optional["CollectionStore"]:
|
|
|
|
return CollectionStore.get_by_name(session, self.collection_name)
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def _initialize_from_embeddings(
|
|
|
|
cls,
|
|
|
|
texts: List[str],
|
|
|
|
embeddings: List[List[float]],
|
|
|
|
embedding: Embeddings,
|
|
|
|
metadatas: Optional[List[dict]] = None,
|
|
|
|
ids: Optional[List[str]] = None,
|
|
|
|
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
|
|
|
|
pre_delete_collection: bool = False,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> PGEmbedding:
|
|
|
|
if ids is None:
|
2024-04-16 13:40:44 +00:00
|
|
|
ids = [str(uuid.uuid4()) for _ in texts]
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
if not metadatas:
|
|
|
|
metadatas = [{} for _ in texts]
|
|
|
|
|
|
|
|
connection_string = cls.get_connection_string(kwargs)
|
|
|
|
|
|
|
|
store = cls(
|
|
|
|
connection_string=connection_string,
|
|
|
|
collection_name=collection_name,
|
|
|
|
embedding_function=embedding,
|
|
|
|
pre_delete_collection=pre_delete_collection,
|
|
|
|
)
|
|
|
|
|
|
|
|
store.add_embeddings(
|
|
|
|
texts=texts, embeddings=embeddings, metadatas=metadatas, ids=ids, **kwargs
|
|
|
|
)
|
|
|
|
|
|
|
|
return store
|
|
|
|
|
|
|
|
def add_embeddings(
|
|
|
|
self,
|
|
|
|
texts: List[str],
|
|
|
|
embeddings: List[List[float]],
|
|
|
|
metadatas: List[dict],
|
|
|
|
ids: List[str],
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> None:
|
|
|
|
with Session(self._conn) as session:
|
|
|
|
collection = self.get_collection(session)
|
|
|
|
if not collection:
|
|
|
|
raise ValueError("Collection not found")
|
|
|
|
for text, metadata, embedding, id in zip(texts, metadatas, embeddings, ids):
|
|
|
|
embedding_store = EmbeddingStore(
|
|
|
|
embedding=embedding,
|
|
|
|
document=text,
|
|
|
|
cmetadata=metadata,
|
|
|
|
custom_id=id,
|
|
|
|
)
|
|
|
|
collection.embeddings.append(embedding_store)
|
|
|
|
session.add(embedding_store)
|
|
|
|
session.commit()
|
|
|
|
|
|
|
|
def add_texts(
|
|
|
|
self,
|
|
|
|
texts: Iterable[str],
|
|
|
|
metadatas: Optional[List[dict]] = None,
|
|
|
|
ids: Optional[List[str]] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> List[str]:
|
|
|
|
if ids is None:
|
2024-04-16 13:40:44 +00:00
|
|
|
ids = [str(uuid.uuid4()) for _ in texts]
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
embeddings = self.embedding_function.embed_documents(list(texts))
|
|
|
|
|
|
|
|
if not metadatas:
|
|
|
|
metadatas = [{} for _ in texts]
|
|
|
|
|
|
|
|
with Session(self._conn) as session:
|
|
|
|
collection = self.get_collection(session)
|
|
|
|
if not collection:
|
|
|
|
raise ValueError("Collection not found")
|
|
|
|
for text, metadata, embedding, id in zip(texts, metadatas, embeddings, ids):
|
|
|
|
embedding_store = EmbeddingStore(
|
|
|
|
embedding=embedding,
|
|
|
|
document=text,
|
|
|
|
cmetadata=metadata,
|
|
|
|
custom_id=id,
|
|
|
|
)
|
|
|
|
collection.embeddings.append(embedding_store)
|
|
|
|
session.add(embedding_store)
|
|
|
|
session.commit()
|
|
|
|
|
|
|
|
return ids
|
|
|
|
|
|
|
|
def similarity_search(
|
|
|
|
self,
|
|
|
|
query: str,
|
|
|
|
k: int = 4,
|
|
|
|
filter: Optional[dict] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> List[Document]:
|
|
|
|
embedding = self.embedding_function.embed_query(text=query)
|
|
|
|
return self.similarity_search_by_vector(
|
|
|
|
embedding=embedding,
|
|
|
|
k=k,
|
|
|
|
filter=filter,
|
|
|
|
)
|
|
|
|
|
|
|
|
def similarity_search_with_score(
|
|
|
|
self,
|
|
|
|
query: str,
|
|
|
|
k: int = 4,
|
|
|
|
filter: Optional[dict] = None,
|
|
|
|
) -> List[Tuple[Document, float]]:
|
|
|
|
embedding = self.embedding_function.embed_query(query)
|
|
|
|
docs = self.similarity_search_with_score_by_vector(
|
|
|
|
embedding=embedding, k=k, filter=filter
|
|
|
|
)
|
|
|
|
return docs
|
|
|
|
|
|
|
|
def similarity_search_with_score_by_vector(
|
|
|
|
self,
|
|
|
|
embedding: List[float],
|
|
|
|
k: int = 4,
|
|
|
|
filter: Optional[dict] = None,
|
|
|
|
) -> List[Tuple[Document, float]]:
|
|
|
|
with Session(self._conn) as session:
|
|
|
|
collection = self.get_collection(session)
|
|
|
|
set_enable_seqscan_stmt = sqlalchemy.text("SET enable_seqscan = off")
|
|
|
|
session.execute(set_enable_seqscan_stmt)
|
|
|
|
if not collection:
|
|
|
|
raise ValueError("Collection not found")
|
|
|
|
|
|
|
|
filter_by = EmbeddingStore.collection_id == collection.uuid
|
|
|
|
|
|
|
|
if filter is not None:
|
|
|
|
filter_clauses = []
|
|
|
|
for key, value in filter.items():
|
|
|
|
IN = "in"
|
|
|
|
if isinstance(value, dict) and IN in map(str.lower, value):
|
|
|
|
value_case_insensitive = {
|
|
|
|
k.lower(): v for k, v in value.items()
|
|
|
|
}
|
|
|
|
filter_by_metadata = EmbeddingStore.cmetadata[key].astext.in_(
|
|
|
|
value_case_insensitive[IN]
|
|
|
|
)
|
|
|
|
filter_clauses.append(filter_by_metadata)
|
|
|
|
elif isinstance(value, dict) and "substring" in map(
|
|
|
|
str.lower, value
|
|
|
|
):
|
|
|
|
filter_by_metadata = EmbeddingStore.cmetadata[key].astext.ilike(
|
|
|
|
f"%{value['substring']}%"
|
|
|
|
)
|
|
|
|
filter_clauses.append(filter_by_metadata)
|
|
|
|
else:
|
|
|
|
filter_by_metadata = EmbeddingStore.cmetadata[
|
|
|
|
key
|
|
|
|
].astext == str(value)
|
|
|
|
filter_clauses.append(filter_by_metadata)
|
|
|
|
|
|
|
|
filter_by = sqlalchemy.and_(filter_by, *filter_clauses)
|
|
|
|
|
|
|
|
results: List[QueryResult] = (
|
|
|
|
session.query(
|
|
|
|
EmbeddingStore,
|
|
|
|
func.abs(EmbeddingStore.embedding.op("<->")(embedding)).label(
|
|
|
|
"distance"
|
|
|
|
),
|
|
|
|
) # Specify the columns you need here, e.g., EmbeddingStore.embedding
|
|
|
|
.filter(filter_by)
|
|
|
|
.order_by(
|
|
|
|
func.abs(EmbeddingStore.embedding.op("<->")(embedding)).asc()
|
|
|
|
) # Using PostgreSQL specific operator with the correct column name
|
|
|
|
.limit(k)
|
|
|
|
.all()
|
|
|
|
)
|
|
|
|
|
|
|
|
docs = [
|
|
|
|
(
|
|
|
|
Document(
|
2024-02-05 19:22:06 +00:00
|
|
|
page_content=result.EmbeddingStore.document, # type: ignore[arg-type]
|
2023-12-11 21:53:30 +00:00
|
|
|
metadata=result.EmbeddingStore.cmetadata,
|
|
|
|
),
|
|
|
|
result.distance if self.embedding_function is not None else 0.0,
|
|
|
|
)
|
|
|
|
for result in results
|
|
|
|
]
|
|
|
|
return docs
|
|
|
|
|
|
|
|
def similarity_search_by_vector(
|
|
|
|
self,
|
|
|
|
embedding: List[float],
|
|
|
|
k: int = 4,
|
|
|
|
filter: Optional[dict] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> List[Document]:
|
|
|
|
docs_and_scores = self.similarity_search_with_score_by_vector(
|
|
|
|
embedding=embedding, k=k, filter=filter
|
|
|
|
)
|
|
|
|
return [doc for doc, _ in docs_and_scores]
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def from_texts(
|
|
|
|
cls: Type[PGEmbedding],
|
|
|
|
texts: List[str],
|
|
|
|
embedding: Embeddings,
|
|
|
|
metadatas: Optional[List[dict]] = None,
|
|
|
|
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
|
|
|
|
ids: Optional[List[str]] = None,
|
|
|
|
pre_delete_collection: bool = False,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> PGEmbedding:
|
|
|
|
embeddings = embedding.embed_documents(list(texts))
|
|
|
|
|
|
|
|
return cls._initialize_from_embeddings(
|
|
|
|
texts,
|
|
|
|
embeddings,
|
|
|
|
embedding,
|
|
|
|
metadatas=metadatas,
|
|
|
|
ids=ids,
|
|
|
|
collection_name=collection_name,
|
|
|
|
pre_delete_collection=pre_delete_collection,
|
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def from_embeddings(
|
|
|
|
cls,
|
|
|
|
text_embeddings: List[Tuple[str, List[float]]],
|
|
|
|
embedding: Embeddings,
|
|
|
|
metadatas: Optional[List[dict]] = None,
|
|
|
|
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
|
|
|
|
ids: Optional[List[str]] = None,
|
|
|
|
pre_delete_collection: bool = False,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> PGEmbedding:
|
|
|
|
texts = [t[0] for t in text_embeddings]
|
|
|
|
embeddings = [t[1] for t in text_embeddings]
|
|
|
|
|
|
|
|
return cls._initialize_from_embeddings(
|
|
|
|
texts,
|
|
|
|
embeddings,
|
|
|
|
embedding,
|
|
|
|
metadatas=metadatas,
|
|
|
|
ids=ids,
|
|
|
|
collection_name=collection_name,
|
|
|
|
pre_delete_collection=pre_delete_collection,
|
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def from_existing_index(
|
|
|
|
cls: Type[PGEmbedding],
|
|
|
|
embedding: Embeddings,
|
|
|
|
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
|
|
|
|
pre_delete_collection: bool = False,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> PGEmbedding:
|
|
|
|
connection_string = cls.get_connection_string(kwargs)
|
|
|
|
|
|
|
|
store = cls(
|
|
|
|
connection_string=connection_string,
|
|
|
|
collection_name=collection_name,
|
|
|
|
embedding_function=embedding,
|
|
|
|
pre_delete_collection=pre_delete_collection,
|
|
|
|
)
|
|
|
|
|
|
|
|
return store
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def get_connection_string(cls, kwargs: Dict[str, Any]) -> str:
|
|
|
|
connection_string: str = get_from_dict_or_env(
|
|
|
|
data=kwargs,
|
|
|
|
key="connection_string",
|
|
|
|
env_key="POSTGRES_CONNECTION_STRING",
|
|
|
|
)
|
|
|
|
|
|
|
|
if not connection_string:
|
|
|
|
raise ValueError(
|
|
|
|
"Postgres connection string is required"
|
|
|
|
"Either pass it as a parameter"
|
|
|
|
"or set the POSTGRES_CONNECTION_STRING environment variable."
|
|
|
|
)
|
|
|
|
|
|
|
|
return connection_string
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def from_documents(
|
|
|
|
cls: Type[PGEmbedding],
|
|
|
|
documents: List[Document],
|
|
|
|
embedding: Embeddings,
|
|
|
|
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
|
|
|
|
ids: Optional[List[str]] = None,
|
|
|
|
pre_delete_collection: bool = False,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> PGEmbedding:
|
|
|
|
texts = [d.page_content for d in documents]
|
|
|
|
metadatas = [d.metadata for d in documents]
|
|
|
|
connection_string = cls.get_connection_string(kwargs)
|
|
|
|
|
|
|
|
kwargs["connection_string"] = connection_string
|
|
|
|
|
|
|
|
return cls.from_texts(
|
|
|
|
texts=texts,
|
|
|
|
pre_delete_collection=pre_delete_collection,
|
|
|
|
embedding=embedding,
|
|
|
|
metadatas=metadatas,
|
|
|
|
ids=ids,
|
|
|
|
collection_name=collection_name,
|
|
|
|
**kwargs,
|
|
|
|
)
|