2023-12-11 21:53:30 +00:00
|
|
|
from __future__ import annotations
|
|
|
|
|
|
|
|
import logging
|
|
|
|
import uuid
|
|
|
|
from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Type
|
|
|
|
|
|
|
|
from sqlalchemy import REAL, Column, String, Table, create_engine, insert, text
|
|
|
|
from sqlalchemy.dialects.postgresql import ARRAY, JSON, TEXT
|
|
|
|
|
|
|
|
try:
|
|
|
|
from sqlalchemy.orm import declarative_base
|
|
|
|
except ImportError:
|
|
|
|
from sqlalchemy.ext.declarative import declarative_base
|
|
|
|
|
|
|
|
from langchain_core.documents import Document
|
|
|
|
from langchain_core.embeddings import Embeddings
|
|
|
|
from langchain_core.utils import get_from_dict_or_env
|
|
|
|
from langchain_core.vectorstores import VectorStore
|
|
|
|
|
|
|
|
_LANGCHAIN_DEFAULT_EMBEDDING_DIM = 1536
|
|
|
|
_LANGCHAIN_DEFAULT_COLLECTION_NAME = "langchain_document"
|
|
|
|
|
|
|
|
Base = declarative_base() # type: Any
|
|
|
|
|
|
|
|
|
|
|
|
class AnalyticDB(VectorStore):
|
|
|
|
"""`AnalyticDB` (distributed PostgreSQL) vector store.
|
|
|
|
|
|
|
|
AnalyticDB is a distributed full postgresql syntax cloud-native database.
|
|
|
|
- `connection_string` is a postgres connection string.
|
|
|
|
- `embedding_function` any embedding function implementing
|
|
|
|
`langchain.embeddings.base.Embeddings` interface.
|
|
|
|
- `collection_name` is the name of the collection to use. (default: langchain)
|
|
|
|
- NOTE: This is not the name of the table, but the name of the collection.
|
|
|
|
The tables will be created when initializing the store (if not exists)
|
|
|
|
So, make sure the user has the right permissions to create tables.
|
|
|
|
- `pre_delete_collection` if True, will delete the collection if it exists.
|
|
|
|
(default: False)
|
|
|
|
- Useful for testing.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
connection_string: str,
|
|
|
|
embedding_function: Embeddings,
|
|
|
|
embedding_dimension: int = _LANGCHAIN_DEFAULT_EMBEDDING_DIM,
|
|
|
|
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
|
|
|
|
pre_delete_collection: bool = False,
|
|
|
|
logger: Optional[logging.Logger] = None,
|
|
|
|
engine_args: Optional[dict] = None,
|
|
|
|
) -> None:
|
|
|
|
self.connection_string = connection_string
|
|
|
|
self.embedding_function = embedding_function
|
|
|
|
self.embedding_dimension = embedding_dimension
|
|
|
|
self.collection_name = collection_name
|
|
|
|
self.pre_delete_collection = pre_delete_collection
|
|
|
|
self.logger = logger or logging.getLogger(__name__)
|
|
|
|
self.__post_init__(engine_args)
|
|
|
|
|
|
|
|
def __post_init__(
|
|
|
|
self,
|
|
|
|
engine_args: Optional[dict] = None,
|
|
|
|
) -> None:
|
|
|
|
"""
|
|
|
|
Initialize the store.
|
|
|
|
"""
|
|
|
|
|
|
|
|
_engine_args = engine_args or {}
|
|
|
|
|
|
|
|
if (
|
|
|
|
"pool_recycle" not in _engine_args
|
|
|
|
): # Check if pool_recycle is not in _engine_args
|
|
|
|
_engine_args[
|
|
|
|
"pool_recycle"
|
|
|
|
] = 3600 # Set pool_recycle to 3600s if not present
|
|
|
|
|
|
|
|
self.engine = create_engine(self.connection_string, **_engine_args)
|
|
|
|
self.create_collection()
|
|
|
|
|
|
|
|
@property
|
|
|
|
def embeddings(self) -> Embeddings:
|
|
|
|
return self.embedding_function
|
|
|
|
|
|
|
|
def _select_relevance_score_fn(self) -> Callable[[float], float]:
|
|
|
|
return self._euclidean_relevance_score_fn
|
|
|
|
|
|
|
|
def create_table_if_not_exists(self) -> None:
|
|
|
|
# Define the dynamic table
|
|
|
|
Table(
|
|
|
|
self.collection_name,
|
|
|
|
Base.metadata,
|
|
|
|
Column("id", TEXT, primary_key=True, default=uuid.uuid4),
|
|
|
|
Column("embedding", ARRAY(REAL)),
|
|
|
|
Column("document", String, nullable=True),
|
|
|
|
Column("metadata", JSON, nullable=True),
|
|
|
|
extend_existing=True,
|
|
|
|
)
|
|
|
|
with self.engine.connect() as conn:
|
|
|
|
with conn.begin():
|
|
|
|
# Create the table
|
|
|
|
Base.metadata.create_all(conn)
|
|
|
|
|
|
|
|
# Check if the index exists
|
|
|
|
index_name = f"{self.collection_name}_embedding_idx"
|
|
|
|
index_query = text(
|
|
|
|
f"""
|
|
|
|
SELECT 1
|
|
|
|
FROM pg_indexes
|
|
|
|
WHERE indexname = '{index_name}';
|
|
|
|
"""
|
|
|
|
)
|
|
|
|
result = conn.execute(index_query).scalar()
|
|
|
|
|
|
|
|
# Create the index if it doesn't exist
|
|
|
|
if not result:
|
|
|
|
index_statement = text(
|
|
|
|
f"""
|
|
|
|
CREATE INDEX {index_name}
|
|
|
|
ON {self.collection_name} USING ann(embedding)
|
|
|
|
WITH (
|
|
|
|
"dim" = {self.embedding_dimension},
|
|
|
|
"hnsw_m" = 100
|
|
|
|
);
|
|
|
|
"""
|
|
|
|
)
|
|
|
|
conn.execute(index_statement)
|
|
|
|
|
|
|
|
def create_collection(self) -> None:
|
|
|
|
if self.pre_delete_collection:
|
|
|
|
self.delete_collection()
|
|
|
|
self.create_table_if_not_exists()
|
|
|
|
|
|
|
|
def delete_collection(self) -> None:
|
|
|
|
self.logger.debug("Trying to delete collection")
|
|
|
|
drop_statement = text(f"DROP TABLE IF EXISTS {self.collection_name};")
|
|
|
|
with self.engine.connect() as conn:
|
|
|
|
with conn.begin():
|
|
|
|
conn.execute(drop_statement)
|
|
|
|
|
|
|
|
def add_texts(
|
|
|
|
self,
|
|
|
|
texts: Iterable[str],
|
|
|
|
metadatas: Optional[List[dict]] = None,
|
|
|
|
ids: Optional[List[str]] = None,
|
|
|
|
batch_size: int = 500,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> List[str]:
|
|
|
|
"""Run more texts through the embeddings and add to the vectorstore.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
texts: Iterable of strings to add to the vectorstore.
|
|
|
|
metadatas: Optional list of metadatas associated with the texts.
|
|
|
|
kwargs: vectorstore specific parameters
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
List of ids from adding the texts into the vectorstore.
|
|
|
|
"""
|
|
|
|
if ids is None:
|
2024-04-16 13:40:44 +00:00
|
|
|
ids = [str(uuid.uuid4()) for _ in texts]
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
embeddings = self.embedding_function.embed_documents(list(texts))
|
|
|
|
|
|
|
|
if not metadatas:
|
|
|
|
metadatas = [{} for _ in texts]
|
|
|
|
|
|
|
|
# Define the table schema
|
|
|
|
chunks_table = Table(
|
|
|
|
self.collection_name,
|
|
|
|
Base.metadata,
|
|
|
|
Column("id", TEXT, primary_key=True),
|
|
|
|
Column("embedding", ARRAY(REAL)),
|
|
|
|
Column("document", String, nullable=True),
|
|
|
|
Column("metadata", JSON, nullable=True),
|
|
|
|
extend_existing=True,
|
|
|
|
)
|
|
|
|
|
|
|
|
chunks_table_data = []
|
|
|
|
with self.engine.connect() as conn:
|
|
|
|
with conn.begin():
|
|
|
|
for document, metadata, chunk_id, embedding in zip(
|
|
|
|
texts, metadatas, ids, embeddings
|
|
|
|
):
|
|
|
|
chunks_table_data.append(
|
|
|
|
{
|
|
|
|
"id": chunk_id,
|
|
|
|
"embedding": embedding,
|
|
|
|
"document": document,
|
|
|
|
"metadata": metadata,
|
|
|
|
}
|
|
|
|
)
|
|
|
|
|
|
|
|
# Execute the batch insert when the batch size is reached
|
|
|
|
if len(chunks_table_data) == batch_size:
|
|
|
|
conn.execute(insert(chunks_table).values(chunks_table_data))
|
|
|
|
# Clear the chunks_table_data list for the next batch
|
|
|
|
chunks_table_data.clear()
|
|
|
|
|
|
|
|
# Insert any remaining records that didn't make up a full batch
|
|
|
|
if chunks_table_data:
|
|
|
|
conn.execute(insert(chunks_table).values(chunks_table_data))
|
|
|
|
|
|
|
|
return ids
|
|
|
|
|
|
|
|
def similarity_search(
|
|
|
|
self,
|
|
|
|
query: str,
|
|
|
|
k: int = 4,
|
|
|
|
filter: Optional[dict] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> List[Document]:
|
|
|
|
"""Run similarity search with AnalyticDB with distance.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
query (str): Query text to search for.
|
|
|
|
k (int): Number of results to return. Defaults to 4.
|
|
|
|
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
List of Documents most similar to the query.
|
|
|
|
"""
|
|
|
|
embedding = self.embedding_function.embed_query(text=query)
|
|
|
|
return self.similarity_search_by_vector(
|
|
|
|
embedding=embedding,
|
|
|
|
k=k,
|
|
|
|
filter=filter,
|
|
|
|
)
|
|
|
|
|
|
|
|
def similarity_search_with_score(
|
|
|
|
self,
|
|
|
|
query: str,
|
|
|
|
k: int = 4,
|
|
|
|
filter: Optional[dict] = None,
|
|
|
|
) -> List[Tuple[Document, float]]:
|
|
|
|
"""Return docs most similar to query.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
query: Text to look up documents similar to.
|
|
|
|
k: Number of Documents to return. Defaults to 4.
|
|
|
|
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
List of Documents most similar to the query and score for each
|
|
|
|
"""
|
|
|
|
embedding = self.embedding_function.embed_query(query)
|
|
|
|
docs = self.similarity_search_with_score_by_vector(
|
|
|
|
embedding=embedding, k=k, filter=filter
|
|
|
|
)
|
|
|
|
return docs
|
|
|
|
|
|
|
|
def similarity_search_with_score_by_vector(
|
|
|
|
self,
|
|
|
|
embedding: List[float],
|
|
|
|
k: int = 4,
|
|
|
|
filter: Optional[dict] = None,
|
|
|
|
) -> List[Tuple[Document, float]]:
|
|
|
|
# Add the filter if provided
|
|
|
|
try:
|
|
|
|
from sqlalchemy.engine import Row
|
|
|
|
except ImportError:
|
|
|
|
raise ImportError(
|
|
|
|
"Could not import Row from sqlalchemy.engine. "
|
|
|
|
"Please 'pip install sqlalchemy>=1.4'."
|
|
|
|
)
|
|
|
|
|
|
|
|
filter_condition = ""
|
|
|
|
if filter is not None:
|
|
|
|
conditions = [
|
|
|
|
f"metadata->>{key!r} = {value!r}" for key, value in filter.items()
|
|
|
|
]
|
|
|
|
filter_condition = f"WHERE {' AND '.join(conditions)}"
|
|
|
|
|
|
|
|
# Define the base query
|
|
|
|
sql_query = f"""
|
|
|
|
SELECT *, l2_distance(embedding, :embedding) as distance
|
|
|
|
FROM {self.collection_name}
|
|
|
|
{filter_condition}
|
|
|
|
ORDER BY embedding <-> :embedding
|
|
|
|
LIMIT :k
|
|
|
|
"""
|
|
|
|
|
|
|
|
# Set up the query parameters
|
|
|
|
params = {"embedding": embedding, "k": k}
|
|
|
|
|
|
|
|
# Execute the query and fetch the results
|
|
|
|
with self.engine.connect() as conn:
|
|
|
|
results: Sequence[Row] = conn.execute(text(sql_query), params).fetchall()
|
|
|
|
|
|
|
|
documents_with_scores = [
|
|
|
|
(
|
|
|
|
Document(
|
|
|
|
page_content=result.document,
|
|
|
|
metadata=result.metadata,
|
|
|
|
),
|
|
|
|
result.distance if self.embedding_function is not None else None,
|
|
|
|
)
|
|
|
|
for result in results
|
|
|
|
]
|
|
|
|
return documents_with_scores
|
|
|
|
|
|
|
|
def similarity_search_by_vector(
|
|
|
|
self,
|
|
|
|
embedding: List[float],
|
|
|
|
k: int = 4,
|
|
|
|
filter: Optional[dict] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> List[Document]:
|
|
|
|
"""Return docs most similar to embedding vector.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
embedding: Embedding to look up documents similar to.
|
|
|
|
k: Number of Documents to return. Defaults to 4.
|
|
|
|
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
List of Documents most similar to the query vector.
|
|
|
|
"""
|
|
|
|
docs_and_scores = self.similarity_search_with_score_by_vector(
|
|
|
|
embedding=embedding, k=k, filter=filter
|
|
|
|
)
|
|
|
|
return [doc for doc, _ in docs_and_scores]
|
|
|
|
|
|
|
|
def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> Optional[bool]:
|
|
|
|
"""Delete by vector IDs.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
ids: List of ids to delete.
|
|
|
|
"""
|
|
|
|
if ids is None:
|
|
|
|
raise ValueError("No ids provided to delete.")
|
|
|
|
|
|
|
|
# Define the table schema
|
|
|
|
chunks_table = Table(
|
|
|
|
self.collection_name,
|
|
|
|
Base.metadata,
|
|
|
|
Column("id", TEXT, primary_key=True),
|
|
|
|
Column("embedding", ARRAY(REAL)),
|
|
|
|
Column("document", String, nullable=True),
|
|
|
|
Column("metadata", JSON, nullable=True),
|
|
|
|
extend_existing=True,
|
|
|
|
)
|
|
|
|
|
|
|
|
try:
|
|
|
|
with self.engine.connect() as conn:
|
|
|
|
with conn.begin():
|
|
|
|
delete_condition = chunks_table.c.id.in_(ids)
|
|
|
|
conn.execute(chunks_table.delete().where(delete_condition))
|
|
|
|
return True
|
|
|
|
except Exception as e:
|
2024-02-10 00:13:30 +00:00
|
|
|
print("Delete operation failed:", str(e)) # noqa: T201
|
2023-12-11 21:53:30 +00:00
|
|
|
return False
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def from_texts(
|
|
|
|
cls: Type[AnalyticDB],
|
|
|
|
texts: List[str],
|
|
|
|
embedding: Embeddings,
|
|
|
|
metadatas: Optional[List[dict]] = None,
|
|
|
|
embedding_dimension: int = _LANGCHAIN_DEFAULT_EMBEDDING_DIM,
|
|
|
|
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
|
|
|
|
ids: Optional[List[str]] = None,
|
|
|
|
pre_delete_collection: bool = False,
|
|
|
|
engine_args: Optional[dict] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> AnalyticDB:
|
|
|
|
"""
|
|
|
|
Return VectorStore initialized from texts and embeddings.
|
|
|
|
Postgres Connection string is required
|
|
|
|
Either pass it as a parameter
|
|
|
|
or set the PG_CONNECTION_STRING environment variable.
|
|
|
|
"""
|
|
|
|
|
|
|
|
connection_string = cls.get_connection_string(kwargs)
|
|
|
|
|
|
|
|
store = cls(
|
|
|
|
connection_string=connection_string,
|
|
|
|
collection_name=collection_name,
|
|
|
|
embedding_function=embedding,
|
|
|
|
embedding_dimension=embedding_dimension,
|
|
|
|
pre_delete_collection=pre_delete_collection,
|
|
|
|
engine_args=engine_args,
|
|
|
|
)
|
|
|
|
|
|
|
|
store.add_texts(texts=texts, metadatas=metadatas, ids=ids, **kwargs)
|
|
|
|
return store
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def get_connection_string(cls, kwargs: Dict[str, Any]) -> str:
|
|
|
|
connection_string: str = get_from_dict_or_env(
|
|
|
|
data=kwargs,
|
|
|
|
key="connection_string",
|
|
|
|
env_key="PG_CONNECTION_STRING",
|
|
|
|
)
|
|
|
|
|
|
|
|
if not connection_string:
|
|
|
|
raise ValueError(
|
|
|
|
"Postgres connection string is required"
|
|
|
|
"Either pass it as a parameter"
|
|
|
|
"or set the PG_CONNECTION_STRING environment variable."
|
|
|
|
)
|
|
|
|
|
|
|
|
return connection_string
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def from_documents(
|
|
|
|
cls: Type[AnalyticDB],
|
|
|
|
documents: List[Document],
|
|
|
|
embedding: Embeddings,
|
|
|
|
embedding_dimension: int = _LANGCHAIN_DEFAULT_EMBEDDING_DIM,
|
|
|
|
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
|
|
|
|
ids: Optional[List[str]] = None,
|
|
|
|
pre_delete_collection: bool = False,
|
|
|
|
engine_args: Optional[dict] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> AnalyticDB:
|
|
|
|
"""
|
|
|
|
Return VectorStore initialized from documents and embeddings.
|
|
|
|
Postgres Connection string is required
|
|
|
|
Either pass it as a parameter
|
|
|
|
or set the PG_CONNECTION_STRING environment variable.
|
|
|
|
"""
|
|
|
|
|
|
|
|
texts = [d.page_content for d in documents]
|
|
|
|
metadatas = [d.metadata for d in documents]
|
|
|
|
connection_string = cls.get_connection_string(kwargs)
|
|
|
|
|
|
|
|
kwargs["connection_string"] = connection_string
|
|
|
|
|
|
|
|
return cls.from_texts(
|
|
|
|
texts=texts,
|
|
|
|
pre_delete_collection=pre_delete_collection,
|
|
|
|
embedding=embedding,
|
|
|
|
embedding_dimension=embedding_dimension,
|
|
|
|
metadatas=metadatas,
|
|
|
|
ids=ids,
|
|
|
|
collection_name=collection_name,
|
|
|
|
engine_args=engine_args,
|
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def connection_string_from_db_params(
|
|
|
|
cls,
|
|
|
|
driver: str,
|
|
|
|
host: str,
|
|
|
|
port: int,
|
|
|
|
database: str,
|
|
|
|
user: str,
|
|
|
|
password: str,
|
|
|
|
) -> str:
|
|
|
|
"""Return connection string from database parameters."""
|
|
|
|
return f"postgresql+{driver}://{user}:{password}@{host}:{port}/{database}"
|