mirror of
https://github.com/hwchase17/langchain
synced 2024-11-04 06:00:26 +00:00
89 lines
2.7 KiB
Python
89 lines
2.7 KiB
Python
|
"""Utils for interacting with the Semantic Scholar API."""
|
||
|
import logging
|
||
|
from typing import Any, Dict, Optional
|
||
|
|
||
|
from langchain_core.pydantic_v1 import BaseModel, root_validator
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
class SemanticScholarAPIWrapper(BaseModel):
|
||
|
"""Wrapper around semanticscholar.org API.
|
||
|
https://github.com/danielnsilva/semanticscholar
|
||
|
|
||
|
You should have this library installed.
|
||
|
|
||
|
`pip install semanticscholar`
|
||
|
|
||
|
Semantic Scholar API can conduct searches and fetch document metadata
|
||
|
like title, abstract, authors, etc.
|
||
|
|
||
|
Attributes:
|
||
|
top_k_results: number of the top-scored document used for the Semantic Scholar tool
|
||
|
load_max_docs: a limit to the number of loaded documents
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
from langchain_community.utilities.semanticscholar import SemanticScholarAPIWrapper
|
||
|
ss = SemanticScholarAPIWrapper(
|
||
|
top_k_results = 3,
|
||
|
load_max_docs = 3
|
||
|
)
|
||
|
ss.run("biases in large language models")
|
||
|
"""
|
||
|
|
||
|
semanticscholar_search: Any #: :meta private:
|
||
|
top_k_results: int = 5
|
||
|
S2_MAX_QUERY_LENGTH: int = 300
|
||
|
load_max_docs: int = 100
|
||
|
doc_content_chars_max: Optional[int] = 4000
|
||
|
returned_fields = [
|
||
|
"title",
|
||
|
"abstract",
|
||
|
"venue",
|
||
|
"year",
|
||
|
"paperId",
|
||
|
"citationCount",
|
||
|
"openAccessPdf",
|
||
|
"authors",
|
||
|
"externalIds",
|
||
|
]
|
||
|
|
||
|
@root_validator()
|
||
|
def validate_environment(cls, values: Dict) -> Dict:
|
||
|
"""Validate that the python package exists in environment."""
|
||
|
try:
|
||
|
from semanticscholar import SemanticScholar
|
||
|
|
||
|
sch = SemanticScholar()
|
||
|
values["semanticscholar_search"] = sch.search_paper
|
||
|
except ImportError:
|
||
|
raise ImportError(
|
||
|
"Could not import Semanticscholar python package. "
|
||
|
"Please install it with `pip install semanticscholar`."
|
||
|
)
|
||
|
return values
|
||
|
|
||
|
def run(self, query: str) -> str:
|
||
|
"""Run the Semantic Scholar API."""
|
||
|
results = self.semanticscholar_search(
|
||
|
query, limit=self.load_max_docs, fields=self.returned_fields
|
||
|
)
|
||
|
documents = []
|
||
|
for item in results[: self.top_k_results]:
|
||
|
authors = ", ".join(
|
||
|
author["name"] for author in getattr(item, "authors", [])
|
||
|
)
|
||
|
documents.append(
|
||
|
f"Published year: {getattr(item, 'year', None)}\n"
|
||
|
f"Title: {getattr(item, 'title', None)}\n"
|
||
|
f"Authors: {authors}\n"
|
||
|
f"Astract: {getattr(item, 'abstract', None)}\n"
|
||
|
)
|
||
|
|
||
|
if documents:
|
||
|
return "\n\n".join(documents)[: self.doc_content_chars_max]
|
||
|
else:
|
||
|
return "No results found."
|