mirror of
https://github.com/hwchase17/langchain
synced 2024-11-04 06:00:26 +00:00
138 lines
4.5 KiB
Python
138 lines
4.5 KiB
Python
|
"""Wrapper around Elasticsearch vector database."""
|
||
|
|
||
|
from __future__ import annotations
|
||
|
|
||
|
import uuid
|
||
|
from typing import Any, Iterable, List
|
||
|
|
||
|
from langchain_core.callbacks import CallbackManagerForRetrieverRun
|
||
|
from langchain_core.documents import Document
|
||
|
from langchain_core.retrievers import BaseRetriever
|
||
|
|
||
|
|
||
|
class ElasticSearchBM25Retriever(BaseRetriever):
|
||
|
"""`Elasticsearch` retriever that uses `BM25`.
|
||
|
|
||
|
To connect to an Elasticsearch instance that requires login credentials,
|
||
|
including Elastic Cloud, use the Elasticsearch URL format
|
||
|
https://username:password@es_host:9243. For example, to connect to Elastic
|
||
|
Cloud, create the Elasticsearch URL with the required authentication details and
|
||
|
pass it to the ElasticVectorSearch constructor as the named parameter
|
||
|
elasticsearch_url.
|
||
|
|
||
|
You can obtain your Elastic Cloud URL and login credentials by logging in to the
|
||
|
Elastic Cloud console at https://cloud.elastic.co, selecting your deployment, and
|
||
|
navigating to the "Deployments" page.
|
||
|
|
||
|
To obtain your Elastic Cloud password for the default "elastic" user:
|
||
|
|
||
|
1. Log in to the Elastic Cloud console at https://cloud.elastic.co
|
||
|
2. Go to "Security" > "Users"
|
||
|
3. Locate the "elastic" user and click "Edit"
|
||
|
4. Click "Reset password"
|
||
|
5. Follow the prompts to reset the password
|
||
|
|
||
|
The format for Elastic Cloud URLs is
|
||
|
https://username:password@cluster_id.region_id.gcp.cloud.es.io:9243.
|
||
|
"""
|
||
|
|
||
|
client: Any
|
||
|
"""Elasticsearch client."""
|
||
|
index_name: str
|
||
|
"""Name of the index to use in Elasticsearch."""
|
||
|
|
||
|
@classmethod
|
||
|
def create(
|
||
|
cls, elasticsearch_url: str, index_name: str, k1: float = 2.0, b: float = 0.75
|
||
|
) -> ElasticSearchBM25Retriever:
|
||
|
"""
|
||
|
Create a ElasticSearchBM25Retriever from a list of texts.
|
||
|
|
||
|
Args:
|
||
|
elasticsearch_url: URL of the Elasticsearch instance to connect to.
|
||
|
index_name: Name of the index to use in Elasticsearch.
|
||
|
k1: BM25 parameter k1.
|
||
|
b: BM25 parameter b.
|
||
|
|
||
|
Returns:
|
||
|
|
||
|
"""
|
||
|
from elasticsearch import Elasticsearch
|
||
|
|
||
|
# Create an Elasticsearch client instance
|
||
|
es = Elasticsearch(elasticsearch_url)
|
||
|
|
||
|
# Define the index settings and mappings
|
||
|
settings = {
|
||
|
"analysis": {"analyzer": {"default": {"type": "standard"}}},
|
||
|
"similarity": {
|
||
|
"custom_bm25": {
|
||
|
"type": "BM25",
|
||
|
"k1": k1,
|
||
|
"b": b,
|
||
|
}
|
||
|
},
|
||
|
}
|
||
|
mappings = {
|
||
|
"properties": {
|
||
|
"content": {
|
||
|
"type": "text",
|
||
|
"similarity": "custom_bm25", # Use the custom BM25 similarity
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
# Create the index with the specified settings and mappings
|
||
|
es.indices.create(index=index_name, mappings=mappings, settings=settings)
|
||
|
return cls(client=es, index_name=index_name)
|
||
|
|
||
|
def add_texts(
|
||
|
self,
|
||
|
texts: Iterable[str],
|
||
|
refresh_indices: bool = True,
|
||
|
) -> List[str]:
|
||
|
"""Run more texts through the embeddings and add to the retriever.
|
||
|
|
||
|
Args:
|
||
|
texts: Iterable of strings to add to the retriever.
|
||
|
refresh_indices: bool to refresh ElasticSearch indices
|
||
|
|
||
|
Returns:
|
||
|
List of ids from adding the texts into the retriever.
|
||
|
"""
|
||
|
try:
|
||
|
from elasticsearch.helpers import bulk
|
||
|
except ImportError:
|
||
|
raise ValueError(
|
||
|
"Could not import elasticsearch python package. "
|
||
|
"Please install it with `pip install elasticsearch`."
|
||
|
)
|
||
|
requests = []
|
||
|
ids = []
|
||
|
for i, text in enumerate(texts):
|
||
|
_id = str(uuid.uuid4())
|
||
|
request = {
|
||
|
"_op_type": "index",
|
||
|
"_index": self.index_name,
|
||
|
"content": text,
|
||
|
"_id": _id,
|
||
|
}
|
||
|
ids.append(_id)
|
||
|
requests.append(request)
|
||
|
bulk(self.client, requests)
|
||
|
|
||
|
if refresh_indices:
|
||
|
self.client.indices.refresh(index=self.index_name)
|
||
|
return ids
|
||
|
|
||
|
def _get_relevant_documents(
|
||
|
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
|
||
|
) -> List[Document]:
|
||
|
query_dict = {"query": {"match": {"content": query}}}
|
||
|
res = self.client.search(index=self.index_name, body=query_dict)
|
||
|
|
||
|
docs = []
|
||
|
for r in res["hits"]["hits"]:
|
||
|
docs.append(Document(page_content=r["_source"]["content"]))
|
||
|
return docs
|