2023-12-11 21:53:30 +00:00
|
|
|
from __future__ import annotations
|
|
|
|
|
|
|
|
import logging
|
|
|
|
from typing import Any, Callable, Dict, List, Optional
|
|
|
|
|
|
|
|
import requests
|
|
|
|
from langchain_core.embeddings import Embeddings
|
2023-12-22 19:43:23 +00:00
|
|
|
from langchain_core.pydantic_v1 import BaseModel, Extra, SecretStr, root_validator
|
|
|
|
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
2023-12-11 21:53:30 +00:00
|
|
|
from tenacity import (
|
|
|
|
before_sleep_log,
|
|
|
|
retry,
|
|
|
|
stop_after_attempt,
|
|
|
|
wait_exponential,
|
|
|
|
)
|
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
def _create_retry_decorator() -> Callable[[Any], Any]:
|
|
|
|
"""Returns a tenacity retry decorator."""
|
|
|
|
|
|
|
|
multiplier = 1
|
|
|
|
min_seconds = 1
|
|
|
|
max_seconds = 4
|
|
|
|
max_retries = 6
|
|
|
|
|
|
|
|
return retry(
|
|
|
|
reraise=True,
|
|
|
|
stop=stop_after_attempt(max_retries),
|
|
|
|
wait=wait_exponential(multiplier=multiplier, min=min_seconds, max=max_seconds),
|
|
|
|
before_sleep=before_sleep_log(logger, logging.WARNING),
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def embed_with_retry(embeddings: MiniMaxEmbeddings, *args: Any, **kwargs: Any) -> Any:
|
|
|
|
"""Use tenacity to retry the completion call."""
|
|
|
|
retry_decorator = _create_retry_decorator()
|
|
|
|
|
|
|
|
@retry_decorator
|
|
|
|
def _embed_with_retry(*args: Any, **kwargs: Any) -> Any:
|
|
|
|
return embeddings.embed(*args, **kwargs)
|
|
|
|
|
|
|
|
return _embed_with_retry(*args, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
class MiniMaxEmbeddings(BaseModel, Embeddings):
|
|
|
|
"""MiniMax's embedding service.
|
|
|
|
|
|
|
|
To use, you should have the environment variable ``MINIMAX_GROUP_ID`` and
|
|
|
|
``MINIMAX_API_KEY`` set with your API token, or pass it as a named parameter to
|
|
|
|
the constructor.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
from langchain_community.embeddings import MiniMaxEmbeddings
|
|
|
|
embeddings = MiniMaxEmbeddings()
|
|
|
|
|
|
|
|
query_text = "This is a test query."
|
|
|
|
query_result = embeddings.embed_query(query_text)
|
|
|
|
|
|
|
|
document_text = "This is a test document."
|
|
|
|
document_result = embeddings.embed_documents([document_text])
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
endpoint_url: str = "https://api.minimax.chat/v1/embeddings"
|
|
|
|
"""Endpoint URL to use."""
|
|
|
|
model: str = "embo-01"
|
|
|
|
"""Embeddings model name to use."""
|
|
|
|
embed_type_db: str = "db"
|
|
|
|
"""For embed_documents"""
|
|
|
|
embed_type_query: str = "query"
|
|
|
|
"""For embed_query"""
|
|
|
|
|
|
|
|
minimax_group_id: Optional[str] = None
|
|
|
|
"""Group ID for MiniMax API."""
|
2023-12-22 19:43:23 +00:00
|
|
|
minimax_api_key: Optional[SecretStr] = None
|
2023-12-11 21:53:30 +00:00
|
|
|
"""API Key for MiniMax API."""
|
|
|
|
|
|
|
|
class Config:
|
|
|
|
"""Configuration for this pydantic object."""
|
|
|
|
|
|
|
|
extra = Extra.forbid
|
|
|
|
|
|
|
|
@root_validator()
|
|
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
|
|
"""Validate that group id and api key exists in environment."""
|
|
|
|
minimax_group_id = get_from_dict_or_env(
|
|
|
|
values, "minimax_group_id", "MINIMAX_GROUP_ID"
|
|
|
|
)
|
2023-12-22 19:43:23 +00:00
|
|
|
minimax_api_key = convert_to_secret_str(
|
|
|
|
get_from_dict_or_env(values, "minimax_api_key", "MINIMAX_API_KEY")
|
2023-12-11 21:53:30 +00:00
|
|
|
)
|
|
|
|
values["minimax_group_id"] = minimax_group_id
|
|
|
|
values["minimax_api_key"] = minimax_api_key
|
|
|
|
return values
|
|
|
|
|
|
|
|
def embed(
|
|
|
|
self,
|
|
|
|
texts: List[str],
|
|
|
|
embed_type: str,
|
|
|
|
) -> List[List[float]]:
|
|
|
|
payload = {
|
|
|
|
"model": self.model,
|
|
|
|
"type": embed_type,
|
|
|
|
"texts": texts,
|
|
|
|
}
|
|
|
|
|
|
|
|
# HTTP headers for authorization
|
|
|
|
headers = {
|
2024-02-05 19:22:06 +00:00
|
|
|
"Authorization": f"Bearer {self.minimax_api_key.get_secret_value()}", # type: ignore[union-attr]
|
2023-12-11 21:53:30 +00:00
|
|
|
"Content-Type": "application/json",
|
|
|
|
}
|
|
|
|
|
|
|
|
params = {
|
|
|
|
"GroupId": self.minimax_group_id,
|
|
|
|
}
|
|
|
|
|
|
|
|
# send request
|
|
|
|
response = requests.post(
|
|
|
|
self.endpoint_url, params=params, headers=headers, json=payload
|
|
|
|
)
|
|
|
|
parsed_response = response.json()
|
|
|
|
|
|
|
|
# check for errors
|
|
|
|
if parsed_response["base_resp"]["status_code"] != 0:
|
|
|
|
raise ValueError(
|
|
|
|
f"MiniMax API returned an error: {parsed_response['base_resp']}"
|
|
|
|
)
|
|
|
|
|
|
|
|
embeddings = parsed_response["vectors"]
|
|
|
|
|
|
|
|
return embeddings
|
|
|
|
|
|
|
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
|
|
"""Embed documents using a MiniMax embedding endpoint.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
texts: The list of texts to embed.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
List of embeddings, one for each text.
|
|
|
|
"""
|
|
|
|
embeddings = embed_with_retry(self, texts=texts, embed_type=self.embed_type_db)
|
|
|
|
return embeddings
|
|
|
|
|
|
|
|
def embed_query(self, text: str) -> List[float]:
|
|
|
|
"""Embed a query using a MiniMax embedding endpoint.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
text: The text to embed.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Embeddings for the text.
|
|
|
|
"""
|
|
|
|
embeddings = embed_with_retry(
|
|
|
|
self, texts=[text], embed_type=self.embed_type_query
|
|
|
|
)
|
|
|
|
return embeddings[0]
|