mirror of
https://github.com/hwchase17/langchain
synced 2024-11-04 06:00:26 +00:00
61 lines
1.6 KiB
Python
61 lines
1.6 KiB
Python
|
from typing import Any, Dict, List
|
||
|
|
||
|
from langchain_core.embeddings import Embeddings
|
||
|
from langchain_core.pydantic_v1 import BaseModel, root_validator
|
||
|
|
||
|
|
||
|
class GPT4AllEmbeddings(BaseModel, Embeddings):
|
||
|
"""GPT4All embedding models.
|
||
|
|
||
|
To use, you should have the gpt4all python package installed
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
from langchain_community.embeddings import GPT4AllEmbeddings
|
||
|
|
||
|
embeddings = GPT4AllEmbeddings()
|
||
|
"""
|
||
|
|
||
|
client: Any #: :meta private:
|
||
|
|
||
|
@root_validator()
|
||
|
def validate_environment(cls, values: Dict) -> Dict:
|
||
|
"""Validate that GPT4All library is installed."""
|
||
|
|
||
|
try:
|
||
|
from gpt4all import Embed4All
|
||
|
|
||
|
values["client"] = Embed4All()
|
||
|
except ImportError:
|
||
|
raise ImportError(
|
||
|
"Could not import gpt4all library. "
|
||
|
"Please install the gpt4all library to "
|
||
|
"use this embedding model: pip install gpt4all"
|
||
|
)
|
||
|
return values
|
||
|
|
||
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||
|
"""Embed a list of documents using GPT4All.
|
||
|
|
||
|
Args:
|
||
|
texts: The list of texts to embed.
|
||
|
|
||
|
Returns:
|
||
|
List of embeddings, one for each text.
|
||
|
"""
|
||
|
|
||
|
embeddings = [self.client.embed(text) for text in texts]
|
||
|
return [list(map(float, e)) for e in embeddings]
|
||
|
|
||
|
def embed_query(self, text: str) -> List[float]:
|
||
|
"""Embed a query using GPT4All.
|
||
|
|
||
|
Args:
|
||
|
text: The text to embed.
|
||
|
|
||
|
Returns:
|
||
|
Embeddings for the text.
|
||
|
"""
|
||
|
return self.embed_documents([text])[0]
|