2023-12-11 21:53:30 +00:00
|
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
|
2024-03-25 20:23:47 +00:00
|
|
|
from langchain_core._api.deprecation import deprecated
|
2023-12-11 21:53:30 +00:00
|
|
|
from langchain_core.embeddings import Embeddings
|
|
|
|
from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator
|
|
|
|
from langchain_core.utils import get_from_dict_or_env
|
|
|
|
|
2024-03-14 22:53:24 +00:00
|
|
|
from langchain_community.llms.cohere import _create_retry_decorator
|
|
|
|
|
2023-12-11 21:53:30 +00:00
|
|
|
|
2024-03-25 20:23:47 +00:00
|
|
|
@deprecated(
|
|
|
|
since="0.0.30",
|
|
|
|
removal="0.2.0",
|
|
|
|
alternative_import="langchain_cohere.CohereEmbeddings",
|
|
|
|
)
|
2023-12-11 21:53:30 +00:00
|
|
|
class CohereEmbeddings(BaseModel, Embeddings):
|
|
|
|
"""Cohere embedding models.
|
|
|
|
|
|
|
|
To use, you should have the ``cohere`` python package installed, and the
|
|
|
|
environment variable ``COHERE_API_KEY`` set with your API key or pass it
|
|
|
|
as a named parameter to the constructor.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
from langchain_community.embeddings import CohereEmbeddings
|
|
|
|
cohere = CohereEmbeddings(
|
|
|
|
model="embed-english-light-v3.0",
|
|
|
|
cohere_api_key="my-api-key"
|
|
|
|
)
|
|
|
|
"""
|
|
|
|
|
|
|
|
client: Any #: :meta private:
|
|
|
|
"""Cohere client."""
|
|
|
|
async_client: Any #: :meta private:
|
|
|
|
"""Cohere async client."""
|
|
|
|
model: str = "embed-english-v2.0"
|
|
|
|
"""Model name to use."""
|
|
|
|
|
|
|
|
truncate: Optional[str] = None
|
|
|
|
"""Truncate embeddings that are too long from start or end ("NONE"|"START"|"END")"""
|
|
|
|
|
|
|
|
cohere_api_key: Optional[str] = None
|
|
|
|
|
2024-03-14 22:53:24 +00:00
|
|
|
max_retries: int = 3
|
2023-12-11 21:53:30 +00:00
|
|
|
"""Maximum number of retries to make when generating."""
|
|
|
|
request_timeout: Optional[float] = None
|
|
|
|
"""Timeout in seconds for the Cohere API request."""
|
|
|
|
user_agent: str = "langchain"
|
|
|
|
"""Identifier for the application making the request."""
|
|
|
|
|
|
|
|
class Config:
|
|
|
|
"""Configuration for this pydantic object."""
|
|
|
|
|
|
|
|
extra = Extra.forbid
|
|
|
|
|
|
|
|
@root_validator()
|
|
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
|
|
"""Validate that api key and python package exists in environment."""
|
|
|
|
cohere_api_key = get_from_dict_or_env(
|
|
|
|
values, "cohere_api_key", "COHERE_API_KEY"
|
|
|
|
)
|
|
|
|
request_timeout = values.get("request_timeout")
|
|
|
|
|
|
|
|
try:
|
|
|
|
import cohere
|
|
|
|
|
|
|
|
client_name = values["user_agent"]
|
|
|
|
values["client"] = cohere.Client(
|
|
|
|
cohere_api_key,
|
|
|
|
timeout=request_timeout,
|
|
|
|
client_name=client_name,
|
|
|
|
)
|
|
|
|
values["async_client"] = cohere.AsyncClient(
|
|
|
|
cohere_api_key,
|
|
|
|
timeout=request_timeout,
|
|
|
|
client_name=client_name,
|
|
|
|
)
|
|
|
|
except ImportError:
|
|
|
|
raise ValueError(
|
|
|
|
"Could not import cohere python package. "
|
|
|
|
"Please install it with `pip install cohere`."
|
|
|
|
)
|
|
|
|
return values
|
|
|
|
|
2024-03-14 22:53:24 +00:00
|
|
|
def embed_with_retry(self, **kwargs: Any) -> Any:
|
|
|
|
"""Use tenacity to retry the embed call."""
|
|
|
|
retry_decorator = _create_retry_decorator(self.max_retries)
|
|
|
|
|
|
|
|
@retry_decorator
|
|
|
|
def _embed_with_retry(**kwargs: Any) -> Any:
|
|
|
|
return self.client.embed(**kwargs)
|
|
|
|
|
|
|
|
return _embed_with_retry(**kwargs)
|
|
|
|
|
|
|
|
def aembed_with_retry(self, **kwargs: Any) -> Any:
|
|
|
|
"""Use tenacity to retry the embed call."""
|
|
|
|
retry_decorator = _create_retry_decorator(self.max_retries)
|
|
|
|
|
|
|
|
@retry_decorator
|
|
|
|
async def _embed_with_retry(**kwargs: Any) -> Any:
|
|
|
|
return await self.async_client.embed(**kwargs)
|
|
|
|
|
|
|
|
return _embed_with_retry(**kwargs)
|
|
|
|
|
2023-12-11 21:53:30 +00:00
|
|
|
def embed(
|
|
|
|
self, texts: List[str], *, input_type: Optional[str] = None
|
|
|
|
) -> List[List[float]]:
|
2024-03-14 22:53:24 +00:00
|
|
|
embeddings = self.embed_with_retry(
|
2023-12-11 21:53:30 +00:00
|
|
|
model=self.model,
|
|
|
|
texts=texts,
|
|
|
|
input_type=input_type,
|
|
|
|
truncate=self.truncate,
|
|
|
|
).embeddings
|
|
|
|
return [list(map(float, e)) for e in embeddings]
|
|
|
|
|
|
|
|
async def aembed(
|
|
|
|
self, texts: List[str], *, input_type: Optional[str] = None
|
|
|
|
) -> List[List[float]]:
|
2024-02-13 05:57:27 +00:00
|
|
|
embeddings = (
|
2024-03-14 22:53:24 +00:00
|
|
|
await self.aembed_with_retry(
|
2024-02-13 05:57:27 +00:00
|
|
|
model=self.model,
|
|
|
|
texts=texts,
|
|
|
|
input_type=input_type,
|
|
|
|
truncate=self.truncate,
|
|
|
|
)
|
2023-12-11 21:53:30 +00:00
|
|
|
).embeddings
|
|
|
|
return [list(map(float, e)) for e in embeddings]
|
|
|
|
|
|
|
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
|
|
"""Embed a list of document texts.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
texts: The list of texts to embed.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
List of embeddings, one for each text.
|
|
|
|
"""
|
|
|
|
return self.embed(texts, input_type="search_document")
|
|
|
|
|
|
|
|
async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
|
|
"""Async call out to Cohere's embedding endpoint.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
texts: The list of texts to embed.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
List of embeddings, one for each text.
|
|
|
|
"""
|
|
|
|
return await self.aembed(texts, input_type="search_document")
|
|
|
|
|
|
|
|
def embed_query(self, text: str) -> List[float]:
|
|
|
|
"""Call out to Cohere's embedding endpoint.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
text: The text to embed.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Embeddings for the text.
|
|
|
|
"""
|
|
|
|
return self.embed([text], input_type="search_query")[0]
|
|
|
|
|
|
|
|
async def aembed_query(self, text: str) -> List[float]:
|
|
|
|
"""Async call out to Cohere's embedding endpoint.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
text: The text to embed.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Embeddings for the text.
|
|
|
|
"""
|
|
|
|
return (await self.aembed([text], input_type="search_query"))[0]
|