2024-03-01 19:46:52 +00:00
|
|
|
from typing import Callable, Dict, Iterator, Optional
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
from langchain_core.documents import Document
|
|
|
|
|
|
|
|
from langchain_community.document_loaders.base import BaseLoader
|
|
|
|
from langchain_community.utilities.tensorflow_datasets import TensorflowDatasets
|
|
|
|
|
|
|
|
|
|
|
|
class TensorflowDatasetLoader(BaseLoader):
|
|
|
|
"""Load from `TensorFlow Dataset`.
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
dataset_name: the name of the dataset to load
|
|
|
|
split_name: the name of the split to load.
|
|
|
|
load_max_docs: a limit to the number of loaded documents. Defaults to 100.
|
|
|
|
sample_to_document_function: a function that converts a dataset sample
|
|
|
|
into a Document
|
|
|
|
|
|
|
|
Example:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
from langchain_community.document_loaders import TensorflowDatasetLoader
|
|
|
|
|
|
|
|
def mlqaen_example_to_document(example: dict) -> Document:
|
|
|
|
return Document(
|
|
|
|
page_content=decode_to_str(example["context"]),
|
|
|
|
metadata={
|
|
|
|
"id": decode_to_str(example["id"]),
|
|
|
|
"title": decode_to_str(example["title"]),
|
|
|
|
"question": decode_to_str(example["question"]),
|
|
|
|
"answer": decode_to_str(example["answers"]["text"][0]),
|
|
|
|
},
|
|
|
|
)
|
|
|
|
|
|
|
|
tsds_client = TensorflowDatasetLoader(
|
|
|
|
dataset_name="mlqa/en",
|
|
|
|
split_name="test",
|
|
|
|
load_max_docs=100,
|
|
|
|
sample_to_document_function=mlqaen_example_to_document,
|
|
|
|
)
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
dataset_name: str,
|
|
|
|
split_name: str,
|
|
|
|
load_max_docs: Optional[int] = 100,
|
|
|
|
sample_to_document_function: Optional[Callable[[Dict], Document]] = None,
|
|
|
|
):
|
|
|
|
"""Initialize the TensorflowDatasetLoader.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
dataset_name: the name of the dataset to load
|
|
|
|
split_name: the name of the split to load.
|
|
|
|
load_max_docs: a limit to the number of loaded documents. Defaults to 100.
|
|
|
|
sample_to_document_function: a function that converts a dataset sample
|
|
|
|
into a Document.
|
|
|
|
"""
|
|
|
|
self.dataset_name: str = dataset_name
|
|
|
|
self.split_name: str = split_name
|
|
|
|
self.load_max_docs = load_max_docs
|
|
|
|
"""The maximum number of documents to load."""
|
|
|
|
self.sample_to_document_function: Optional[
|
|
|
|
Callable[[Dict], Document]
|
|
|
|
] = sample_to_document_function
|
|
|
|
"""Custom function that transform a dataset sample into a Document."""
|
|
|
|
|
|
|
|
self._tfds_client = TensorflowDatasets(
|
|
|
|
dataset_name=self.dataset_name,
|
|
|
|
split_name=self.split_name,
|
|
|
|
load_max_docs=self.load_max_docs,
|
|
|
|
sample_to_document_function=self.sample_to_document_function,
|
|
|
|
)
|
|
|
|
|
|
|
|
def lazy_load(self) -> Iterator[Document]:
|
|
|
|
yield from self._tfds_client.lazy_load()
|