langchain/libs/community/langchain_community/document_loaders/tensorflow_datasets.py

78 lines
2.9 KiB
Python
Raw Normal View History

from typing import Callable, Dict, Iterator, Optional
community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463) Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
2023-12-11 21:53:30 +00:00
from langchain_core.documents import Document
from langchain_community.document_loaders.base import BaseLoader
from langchain_community.utilities.tensorflow_datasets import TensorflowDatasets
class TensorflowDatasetLoader(BaseLoader):
"""Load from `TensorFlow Dataset`.
Attributes:
dataset_name: the name of the dataset to load
split_name: the name of the split to load.
load_max_docs: a limit to the number of loaded documents. Defaults to 100.
sample_to_document_function: a function that converts a dataset sample
into a Document
Example:
.. code-block:: python
from langchain_community.document_loaders import TensorflowDatasetLoader
def mlqaen_example_to_document(example: dict) -> Document:
return Document(
page_content=decode_to_str(example["context"]),
metadata={
"id": decode_to_str(example["id"]),
"title": decode_to_str(example["title"]),
"question": decode_to_str(example["question"]),
"answer": decode_to_str(example["answers"]["text"][0]),
},
)
tsds_client = TensorflowDatasetLoader(
dataset_name="mlqa/en",
split_name="test",
load_max_docs=100,
sample_to_document_function=mlqaen_example_to_document,
)
"""
def __init__(
self,
dataset_name: str,
split_name: str,
load_max_docs: Optional[int] = 100,
sample_to_document_function: Optional[Callable[[Dict], Document]] = None,
):
"""Initialize the TensorflowDatasetLoader.
Args:
dataset_name: the name of the dataset to load
split_name: the name of the split to load.
load_max_docs: a limit to the number of loaded documents. Defaults to 100.
sample_to_document_function: a function that converts a dataset sample
into a Document.
"""
self.dataset_name: str = dataset_name
self.split_name: str = split_name
self.load_max_docs = load_max_docs
"""The maximum number of documents to load."""
self.sample_to_document_function: Optional[
Callable[[Dict], Document]
] = sample_to_document_function
"""Custom function that transform a dataset sample into a Document."""
self._tfds_client = TensorflowDatasets(
dataset_name=self.dataset_name,
split_name=self.split_name,
load_max_docs=self.load_max_docs,
sample_to_document_function=self.sample_to_document_function,
)
def lazy_load(self) -> Iterator[Document]:
yield from self._tfds_client.lazy_load()