langchain/libs/community/langchain_community/document_compressors/openvino_rerank.py

167 lines
5.6 KiB
Python
Raw Normal View History

from pathlib import Path
from typing import Any, Dict, Optional, Sequence
import numpy as np
from langchain_core.callbacks import Callbacks
from langchain_core.documents import Document
from langchain_core.documents.compressor import BaseDocumentCompressor
from langchain_core.pydantic_v1 import Field
class RerankRequest:
"""Request for reranking."""
def __init__(self, query: Any = None, passages: Any = None):
self.query = query
self.passages = passages if passages is not None else []
class OpenVINOReranker(BaseDocumentCompressor):
"""
OpenVINO rerank models.
"""
ov_model: Any
"""OpenVINO model object."""
tokenizer: Any
"""Tokenizer for embedding model."""
model_name_or_path: str
"""HuggingFace model id."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Keyword arguments passed to the model."""
top_n: int = 4
"""return Top n texts."""
def __init__(self, **kwargs: Any):
super().__init__(**kwargs)
try:
from optimum.intel.openvino import OVModelForSequenceClassification
except ImportError as e:
raise ValueError(
"Could not import optimum-intel python package. "
"Please install it with: "
"pip install -U 'optimum[openvino,nncf]'"
) from e
try:
from huggingface_hub import HfApi
except ImportError as e:
raise ValueError(
"Could not import huggingface_hub python package. "
"Please install it with: "
"`pip install -U huggingface_hub`."
) from e
def require_model_export(
model_id: str, revision: Any = None, subfolder: Any = None
) -> bool:
model_dir = Path(model_id)
if subfolder is not None:
model_dir = model_dir / subfolder
if model_dir.is_dir():
return (
not (model_dir / "openvino_model.xml").exists()
or not (model_dir / "openvino_model.bin").exists()
)
hf_api = HfApi()
try:
model_info = hf_api.model_info(model_id, revision=revision or "main")
normalized_subfolder = (
None if subfolder is None else Path(subfolder).as_posix()
)
model_files = [
file.rfilename
for file in model_info.siblings
if normalized_subfolder is None
or file.rfilename.startswith(normalized_subfolder)
]
ov_model_path = (
"openvino_model.xml"
if subfolder is None
else f"{normalized_subfolder}/openvino_model.xml"
)
return (
ov_model_path not in model_files
or ov_model_path.replace(".xml", ".bin") not in model_files
)
except Exception:
return True
if require_model_export(self.model_name_or_path):
# use remote model
self.ov_model = OVModelForSequenceClassification.from_pretrained(
self.model_name_or_path, export=True, **self.model_kwargs
)
else:
# use local model
self.ov_model = OVModelForSequenceClassification.from_pretrained(
self.model_name_or_path, **self.model_kwargs
)
try:
from transformers import AutoTokenizer
except ImportError as e:
raise ImportError(
"Unable to import transformers, please install with "
"`pip install -U transformers`."
) from e
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name_or_path)
def rerank(self, request: Any) -> Any:
query = request.query
passages = request.passages
query_passage_pairs = [[query, passage["text"]] for passage in passages]
input_tensors = self.tokenizer(
query_passage_pairs, padding=True, truncation=True, return_tensors="pt"
)
outputs = self.ov_model(**input_tensors, return_dict=True)
if outputs[0].shape[1] > 1:
scores = outputs[0][:, 1]
else:
scores = outputs[0].flatten()
scores = list(1 / (1 + np.exp(-scores)))
# Combine scores with passages, including metadata
for score, passage in zip(scores, passages):
passage["score"] = score
# Sort passages based on scores
passages.sort(key=lambda x: x["score"], reverse=True)
return passages
def compress_documents(
self,
documents: Sequence[Document],
query: str,
callbacks: Optional[Callbacks] = None,
) -> Sequence[Document]:
passages = [
{"id": i, "text": doc.page_content} for i, doc in enumerate(documents)
]
rerank_request = RerankRequest(query=query, passages=passages)
rerank_response = self.rerank(rerank_request)[: self.top_n]
final_results = []
for r in rerank_response:
doc = Document(
page_content=r["text"],
metadata={"id": r["id"], "relevance_score": r["score"]},
)
final_results.append(doc)
return final_results
def save_model(
self,
model_path: str,
) -> bool:
self.ov_model.half()
self.ov_model.save_pretrained(model_path)
self.tokenizer.save_pretrained(model_path)
return True