mirror of
https://github.com/hwchase17/langchain
synced 2024-11-04 06:00:26 +00:00
64 lines
1.9 KiB
Python
64 lines
1.9 KiB
Python
|
from typing import Any, Dict, List, Tuple
|
||
|
|
||
|
from langchain_core.pydantic_v1 import BaseModel, Extra, Field
|
||
|
|
||
|
from langchain_community.cross_encoders.base import BaseCrossEncoder
|
||
|
|
||
|
DEFAULT_MODEL_NAME = "BAAI/bge-reranker-base"
|
||
|
|
||
|
|
||
|
class HuggingFaceCrossEncoder(BaseModel, BaseCrossEncoder):
|
||
|
"""HuggingFace cross encoder models.
|
||
|
|
||
|
Example:
|
||
|
.. code-block:: python
|
||
|
|
||
|
from langchain_community.cross_encoders import HuggingFaceCrossEncoder
|
||
|
|
||
|
model_name = "BAAI/bge-reranker-base"
|
||
|
model_kwargs = {'device': 'cpu'}
|
||
|
hf = HuggingFaceCrossEncoder(
|
||
|
model_name=model_name,
|
||
|
model_kwargs=model_kwargs
|
||
|
)
|
||
|
"""
|
||
|
|
||
|
client: Any #: :meta private:
|
||
|
model_name: str = DEFAULT_MODEL_NAME
|
||
|
"""Model name to use."""
|
||
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||
|
"""Keyword arguments to pass to the model."""
|
||
|
|
||
|
def __init__(self, **kwargs: Any):
|
||
|
"""Initialize the sentence_transformer."""
|
||
|
super().__init__(**kwargs)
|
||
|
try:
|
||
|
import sentence_transformers
|
||
|
|
||
|
except ImportError as exc:
|
||
|
raise ImportError(
|
||
|
"Could not import sentence_transformers python package. "
|
||
|
"Please install it with `pip install sentence-transformers`."
|
||
|
) from exc
|
||
|
|
||
|
self.client = sentence_transformers.CrossEncoder(
|
||
|
self.model_name, **self.model_kwargs
|
||
|
)
|
||
|
|
||
|
class Config:
|
||
|
"""Configuration for this pydantic object."""
|
||
|
|
||
|
extra = Extra.forbid
|
||
|
|
||
|
def score(self, text_pairs: List[Tuple[str, str]]) -> List[float]:
|
||
|
"""Compute similarity scores using a HuggingFace transformer model.
|
||
|
|
||
|
Args:
|
||
|
text_pairs: The list of text text_pairs to score the similarity.
|
||
|
|
||
|
Returns:
|
||
|
List of scores, one for each pair.
|
||
|
"""
|
||
|
scores = self.client.predict(text_pairs)
|
||
|
return scores
|