2024-02-13 18:55:14 +00:00
|
|
|
"""ChatYuan2 wrapper."""
|
|
|
|
from __future__ import annotations
|
|
|
|
|
|
|
|
import logging
|
|
|
|
from typing import (
|
|
|
|
Any,
|
|
|
|
AsyncIterator,
|
|
|
|
Callable,
|
|
|
|
Dict,
|
|
|
|
Iterator,
|
|
|
|
List,
|
|
|
|
Mapping,
|
|
|
|
Optional,
|
|
|
|
Tuple,
|
|
|
|
Type,
|
|
|
|
Union,
|
|
|
|
)
|
|
|
|
|
|
|
|
from langchain_core.callbacks import (
|
|
|
|
AsyncCallbackManagerForLLMRun,
|
|
|
|
CallbackManagerForLLMRun,
|
|
|
|
)
|
|
|
|
from langchain_core.language_models.chat_models import (
|
|
|
|
BaseChatModel,
|
|
|
|
agenerate_from_stream,
|
|
|
|
generate_from_stream,
|
|
|
|
)
|
|
|
|
from langchain_core.messages import (
|
|
|
|
AIMessage,
|
|
|
|
AIMessageChunk,
|
|
|
|
BaseMessage,
|
|
|
|
BaseMessageChunk,
|
|
|
|
ChatMessage,
|
|
|
|
ChatMessageChunk,
|
|
|
|
FunctionMessage,
|
|
|
|
HumanMessage,
|
|
|
|
HumanMessageChunk,
|
|
|
|
SystemMessage,
|
|
|
|
SystemMessageChunk,
|
|
|
|
)
|
|
|
|
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
2024-03-15 23:28:36 +00:00
|
|
|
from langchain_core.pydantic_v1 import BaseModel, Field, root_validator
|
2024-02-13 18:55:14 +00:00
|
|
|
from langchain_core.utils import (
|
|
|
|
get_from_dict_or_env,
|
|
|
|
get_pydantic_field_names,
|
|
|
|
)
|
|
|
|
from tenacity import (
|
|
|
|
before_sleep_log,
|
|
|
|
retry,
|
|
|
|
retry_if_exception_type,
|
|
|
|
stop_after_attempt,
|
|
|
|
wait_exponential,
|
|
|
|
)
|
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
class ChatYuan2(BaseChatModel):
|
|
|
|
"""`Yuan2.0` Chat models API.
|
|
|
|
|
|
|
|
To use, you should have the ``openai-python`` package installed, if package
|
|
|
|
not installed, using ```pip install openai``` to install it. The
|
|
|
|
environment variable ``YUAN2_API_KEY`` set to your API key, if not set,
|
|
|
|
everyone can access apis.
|
|
|
|
|
|
|
|
Any parameters that are valid to be passed to the openai.create call can be passed
|
|
|
|
in, even if not explicitly saved on this class.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
from langchain_community.chat_models import ChatYuan2
|
|
|
|
|
|
|
|
chat = ChatYuan2()
|
|
|
|
"""
|
|
|
|
|
|
|
|
client: Any #: :meta private:
|
|
|
|
async_client: Any = Field(default=None, exclude=True) #: :meta private:
|
|
|
|
|
|
|
|
model_name: str = Field(default="yuan2", alias="model")
|
|
|
|
"""Model name to use."""
|
|
|
|
|
|
|
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
|
|
"""Holds any model parameters valid for `create` call not explicitly specified."""
|
|
|
|
|
|
|
|
yuan2_api_key: Optional[str] = Field(default="EMPTY", alias="api_key")
|
|
|
|
"""Automatically inferred from env var `YUAN2_API_KEY` if not provided."""
|
|
|
|
|
|
|
|
yuan2_api_base: Optional[str] = Field(
|
2024-03-15 23:28:36 +00:00
|
|
|
default="http://127.0.0.1:8000/v1", alias="base_url"
|
2024-02-13 18:55:14 +00:00
|
|
|
)
|
|
|
|
"""Base URL path for API requests, an OpenAI compatible API server."""
|
|
|
|
|
|
|
|
request_timeout: Optional[Union[float, Tuple[float, float]]] = None
|
|
|
|
"""Timeout for requests to yuan2 completion API. Default is 600 seconds."""
|
|
|
|
|
|
|
|
max_retries: int = 6
|
|
|
|
"""Maximum number of retries to make when generating."""
|
|
|
|
|
|
|
|
streaming: bool = False
|
|
|
|
"""Whether to stream the results or not."""
|
|
|
|
|
|
|
|
max_tokens: Optional[int] = None
|
|
|
|
"""Maximum number of tokens to generate."""
|
|
|
|
|
|
|
|
temperature: float = 1.0
|
|
|
|
"""What sampling temperature to use."""
|
|
|
|
|
|
|
|
top_p: Optional[float] = 0.9
|
|
|
|
"""The top-p value to use for sampling."""
|
|
|
|
|
|
|
|
stop: Optional[List[str]] = ["<eod>"]
|
|
|
|
"""A list of strings to stop generation when encountered."""
|
|
|
|
|
|
|
|
repeat_last_n: Optional[int] = 64
|
|
|
|
"Last n tokens to penalize"
|
|
|
|
|
|
|
|
repeat_penalty: Optional[float] = 1.18
|
|
|
|
"""The penalty to apply to repeated tokens."""
|
|
|
|
|
|
|
|
class Config:
|
|
|
|
"""Configuration for this pydantic object."""
|
|
|
|
|
|
|
|
allow_population_by_field_name = True
|
|
|
|
|
|
|
|
@property
|
|
|
|
def lc_secrets(self) -> Dict[str, str]:
|
|
|
|
return {"yuan2_api_key": "YUAN2_API_KEY"}
|
|
|
|
|
|
|
|
@property
|
|
|
|
def lc_attributes(self) -> Dict[str, Any]:
|
|
|
|
attributes: Dict[str, Any] = {}
|
|
|
|
|
|
|
|
if self.yuan2_api_base:
|
|
|
|
attributes["yuan2_api_base"] = self.yuan2_api_base
|
|
|
|
|
|
|
|
if self.yuan2_api_key:
|
|
|
|
attributes["yuan2_api_key"] = self.yuan2_api_key
|
|
|
|
|
|
|
|
return attributes
|
|
|
|
|
|
|
|
@root_validator(pre=True)
|
|
|
|
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
|
|
|
"""Build extra kwargs from additional params that were passed in."""
|
|
|
|
all_required_field_names = get_pydantic_field_names(cls)
|
|
|
|
extra = values.get("model_kwargs", {})
|
|
|
|
for field_name in list(values):
|
|
|
|
if field_name in extra:
|
|
|
|
raise ValueError(f"Found {field_name} supplied twice.")
|
|
|
|
if field_name not in all_required_field_names:
|
|
|
|
logger.warning(
|
|
|
|
f"""WARNING! {field_name} is not default parameter.
|
|
|
|
{field_name} was transferred to model_kwargs.
|
|
|
|
Please confirm that {field_name} is what you intended."""
|
|
|
|
)
|
|
|
|
extra[field_name] = values.pop(field_name)
|
|
|
|
|
|
|
|
invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
|
|
|
|
if invalid_model_kwargs:
|
|
|
|
raise ValueError(
|
|
|
|
f"Parameters {invalid_model_kwargs} should be specified explicitly. "
|
|
|
|
f"Instead they were passed in as part of `model_kwargs` parameter."
|
|
|
|
)
|
|
|
|
|
|
|
|
values["model_kwargs"] = extra
|
|
|
|
return values
|
|
|
|
|
|
|
|
@root_validator()
|
|
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
|
|
"""Validate that api key and python package exists in environment."""
|
|
|
|
values["yuan2_api_key"] = get_from_dict_or_env(
|
|
|
|
values, "yuan2_api_key", "YUAN2_API_KEY"
|
|
|
|
)
|
|
|
|
|
|
|
|
try:
|
|
|
|
import openai
|
|
|
|
|
|
|
|
except ImportError:
|
|
|
|
raise ValueError(
|
|
|
|
"Could not import openai python package. "
|
|
|
|
"Please install it with `pip install openai`."
|
|
|
|
)
|
|
|
|
client_params = {
|
|
|
|
"api_key": values["yuan2_api_key"],
|
|
|
|
"base_url": values["yuan2_api_base"],
|
|
|
|
"timeout": values["request_timeout"],
|
|
|
|
"max_retries": values["max_retries"],
|
|
|
|
}
|
|
|
|
|
|
|
|
# generate client and async_client
|
|
|
|
if not values.get("client"):
|
|
|
|
values["client"] = openai.OpenAI(**client_params).chat.completions
|
|
|
|
if not values.get("async_client"):
|
|
|
|
values["async_client"] = openai.AsyncOpenAI(
|
|
|
|
**client_params
|
|
|
|
).chat.completions
|
|
|
|
|
|
|
|
return values
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _default_params(self) -> Dict[str, Any]:
|
|
|
|
"""Get the default parameters for calling yuan2 API."""
|
|
|
|
params = {
|
|
|
|
"model": self.model_name,
|
|
|
|
"stream": self.streaming,
|
|
|
|
"temperature": self.temperature,
|
|
|
|
"top_p": self.top_p,
|
|
|
|
**self.model_kwargs,
|
|
|
|
}
|
|
|
|
if self.max_tokens is not None:
|
|
|
|
params["max_tokens"] = self.max_tokens
|
|
|
|
if self.request_timeout is not None:
|
|
|
|
params["request_timeout"] = self.request_timeout
|
|
|
|
return params
|
|
|
|
|
|
|
|
def completion_with_retry(self, **kwargs: Any) -> Any:
|
|
|
|
"""Use tenacity to retry the completion call."""
|
|
|
|
retry_decorator = _create_retry_decorator(self)
|
|
|
|
|
|
|
|
@retry_decorator
|
|
|
|
def _completion_with_retry(**kwargs: Any) -> Any:
|
|
|
|
return self.client.create(**kwargs)
|
|
|
|
|
|
|
|
return _completion_with_retry(**kwargs)
|
|
|
|
|
|
|
|
def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict:
|
|
|
|
overall_token_usage: dict = {}
|
|
|
|
logger.debug(
|
|
|
|
f"type(llm_outputs): {type(llm_outputs)}; llm_outputs: {llm_outputs}"
|
|
|
|
)
|
|
|
|
for output in llm_outputs:
|
|
|
|
if output is None:
|
|
|
|
# Happens in streaming
|
|
|
|
continue
|
|
|
|
token_usage = output["token_usage"]
|
2024-03-15 23:28:36 +00:00
|
|
|
for k, v in token_usage.items():
|
2024-02-13 18:55:14 +00:00
|
|
|
if k in overall_token_usage:
|
|
|
|
overall_token_usage[k] += v
|
|
|
|
else:
|
|
|
|
overall_token_usage[k] = v
|
|
|
|
return {"token_usage": overall_token_usage, "model_name": self.model_name}
|
|
|
|
|
|
|
|
def _stream(
|
|
|
|
self,
|
|
|
|
messages: List[BaseMessage],
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> Iterator[ChatGenerationChunk]:
|
|
|
|
message_dicts, params = self._create_message_dicts(messages, stop)
|
|
|
|
params = {**params, **kwargs, "stream": True}
|
|
|
|
|
|
|
|
default_chunk_class = AIMessageChunk
|
|
|
|
for chunk in self.completion_with_retry(messages=message_dicts, **params):
|
|
|
|
if not isinstance(chunk, dict):
|
|
|
|
chunk = chunk.model_dump()
|
|
|
|
if len(chunk["choices"]) == 0:
|
|
|
|
continue
|
|
|
|
choice = chunk["choices"][0]
|
|
|
|
chunk = _convert_delta_to_message_chunk(
|
|
|
|
choice["delta"], default_chunk_class
|
|
|
|
)
|
|
|
|
finish_reason = choice.get("finish_reason")
|
|
|
|
generation_info = (
|
|
|
|
dict(finish_reason=finish_reason) if finish_reason is not None else None
|
|
|
|
)
|
|
|
|
default_chunk_class = chunk.__class__
|
2024-02-21 23:32:28 +00:00
|
|
|
cg_chunk = ChatGenerationChunk(
|
2024-02-13 18:55:14 +00:00
|
|
|
message=chunk,
|
|
|
|
generation_info=generation_info,
|
|
|
|
)
|
|
|
|
if run_manager:
|
2024-02-21 23:32:28 +00:00
|
|
|
run_manager.on_llm_new_token(chunk.content, chunk=cg_chunk)
|
2024-02-23 00:15:21 +00:00
|
|
|
yield cg_chunk
|
2024-02-13 18:55:14 +00:00
|
|
|
|
|
|
|
def _generate(
|
|
|
|
self,
|
|
|
|
messages: List[BaseMessage],
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> ChatResult:
|
|
|
|
if self.streaming:
|
|
|
|
stream_iter = self._stream(
|
|
|
|
messages=messages, stop=stop, run_manager=run_manager, **kwargs
|
|
|
|
)
|
|
|
|
return generate_from_stream(stream_iter)
|
|
|
|
|
|
|
|
message_dicts, params = self._create_message_dicts(messages, stop)
|
|
|
|
params = {**params, **kwargs}
|
|
|
|
response = self.completion_with_retry(messages=message_dicts, **params)
|
|
|
|
return self._create_chat_result(response)
|
|
|
|
|
|
|
|
def _create_message_dicts(
|
|
|
|
self, messages: List[BaseMessage], stop: Optional[List[str]]
|
|
|
|
) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
|
|
|
|
params = dict(self._invocation_params)
|
|
|
|
if stop is not None:
|
|
|
|
if "stop" in params:
|
|
|
|
raise ValueError("`stop` found in both the input and default params.")
|
|
|
|
params["stop"] = stop
|
|
|
|
message_dicts = [_convert_message_to_dict(m) for m in messages]
|
|
|
|
return message_dicts, params
|
|
|
|
|
2024-03-15 23:28:36 +00:00
|
|
|
def _create_chat_result(self, response: Union[dict, BaseModel]) -> ChatResult:
|
2024-02-13 18:55:14 +00:00
|
|
|
generations = []
|
|
|
|
logger.debug(f"type(response): {type(response)}; response: {response}")
|
2024-03-15 23:28:36 +00:00
|
|
|
if not isinstance(response, dict):
|
|
|
|
response = response.dict()
|
|
|
|
for res in response["choices"]:
|
|
|
|
message = _convert_dict_to_message(res["message"])
|
|
|
|
generation_info = dict(finish_reason=res["finish_reason"])
|
2024-02-13 18:55:14 +00:00
|
|
|
if "logprobs" in res:
|
2024-03-15 23:28:36 +00:00
|
|
|
generation_info["logprobs"] = res["logprobs"]
|
2024-02-13 18:55:14 +00:00
|
|
|
gen = ChatGeneration(
|
|
|
|
message=message,
|
|
|
|
generation_info=generation_info,
|
|
|
|
)
|
|
|
|
generations.append(gen)
|
|
|
|
llm_output = {
|
2024-03-15 23:28:36 +00:00
|
|
|
"token_usage": response.get("usage", {}),
|
2024-02-13 18:55:14 +00:00
|
|
|
"model_name": self.model_name,
|
|
|
|
}
|
|
|
|
return ChatResult(generations=generations, llm_output=llm_output)
|
|
|
|
|
|
|
|
async def _astream(
|
|
|
|
self,
|
|
|
|
messages: List[BaseMessage],
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> AsyncIterator[ChatGenerationChunk]:
|
|
|
|
message_dicts, params = self._create_message_dicts(messages, stop)
|
|
|
|
params = {**params, **kwargs, "stream": True}
|
|
|
|
|
|
|
|
default_chunk_class = AIMessageChunk
|
|
|
|
async for chunk in await acompletion_with_retry(
|
|
|
|
self, messages=message_dicts, **params
|
|
|
|
):
|
|
|
|
if not isinstance(chunk, dict):
|
|
|
|
chunk = chunk.model_dump()
|
|
|
|
if len(chunk["choices"]) == 0:
|
|
|
|
continue
|
|
|
|
choice = chunk["choices"][0]
|
|
|
|
chunk = _convert_delta_to_message_chunk(
|
|
|
|
choice["delta"], default_chunk_class
|
|
|
|
)
|
|
|
|
finish_reason = choice.get("finish_reason")
|
|
|
|
generation_info = (
|
|
|
|
dict(finish_reason=finish_reason) if finish_reason is not None else None
|
|
|
|
)
|
|
|
|
default_chunk_class = chunk.__class__
|
2024-02-21 23:32:28 +00:00
|
|
|
cg_chunk = ChatGenerationChunk(
|
2024-02-13 18:55:14 +00:00
|
|
|
message=chunk,
|
|
|
|
generation_info=generation_info,
|
|
|
|
)
|
|
|
|
if run_manager:
|
2024-02-21 23:32:28 +00:00
|
|
|
await run_manager.on_llm_new_token(chunk.content, chunk=cg_chunk)
|
2024-02-23 00:15:21 +00:00
|
|
|
yield cg_chunk
|
2024-02-13 18:55:14 +00:00
|
|
|
|
|
|
|
async def _agenerate(
|
|
|
|
self,
|
|
|
|
messages: List[BaseMessage],
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> ChatResult:
|
|
|
|
if self.streaming:
|
|
|
|
stream_iter = self._astream(
|
|
|
|
messages=messages, stop=stop, run_manager=run_manager, **kwargs
|
|
|
|
)
|
|
|
|
return await agenerate_from_stream(stream_iter)
|
|
|
|
|
|
|
|
message_dicts, params = self._create_message_dicts(messages, stop)
|
|
|
|
params = {**params, **kwargs}
|
|
|
|
response = await acompletion_with_retry(self, messages=message_dicts, **params)
|
|
|
|
return self._create_chat_result(response)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _invocation_params(self) -> Mapping[str, Any]:
|
|
|
|
"""Get the parameters used to invoke the model."""
|
|
|
|
yuan2_creds: Dict[str, Any] = {
|
|
|
|
"model": self.model_name,
|
|
|
|
}
|
|
|
|
return {**yuan2_creds, **self._default_params}
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _llm_type(self) -> str:
|
|
|
|
"""Return type of chat model."""
|
|
|
|
return "chat-yuan2"
|
|
|
|
|
|
|
|
|
|
|
|
def _create_retry_decorator(llm: ChatYuan2) -> Callable[[Any], Any]:
|
|
|
|
import openai
|
|
|
|
|
|
|
|
min_seconds = 1
|
|
|
|
max_seconds = 60
|
|
|
|
# Wait 2^x * 1 second between each retry starting with
|
|
|
|
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
|
|
|
|
return retry(
|
|
|
|
reraise=True,
|
|
|
|
stop=stop_after_attempt(llm.max_retries),
|
|
|
|
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
|
|
|
|
retry=(
|
|
|
|
retry_if_exception_type(openai.APITimeoutError)
|
|
|
|
| retry_if_exception_type(openai.APIError)
|
|
|
|
| retry_if_exception_type(openai.APIConnectionError)
|
|
|
|
| retry_if_exception_type(openai.RateLimitError)
|
|
|
|
| retry_if_exception_type(openai.InternalServerError)
|
|
|
|
),
|
|
|
|
before_sleep=before_sleep_log(logger, logging.WARNING),
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
async def acompletion_with_retry(llm: ChatYuan2, **kwargs: Any) -> Any:
|
|
|
|
"""Use tenacity to retry the async completion call."""
|
|
|
|
retry_decorator = _create_retry_decorator(llm)
|
|
|
|
|
|
|
|
@retry_decorator
|
|
|
|
async def _completion_with_retry(**kwargs: Any) -> Any:
|
|
|
|
# Use OpenAI's async api https://github.com/openai/openai-python#async-api
|
|
|
|
return await llm.async_client.create(**kwargs)
|
|
|
|
|
|
|
|
return await _completion_with_retry(**kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
def _convert_delta_to_message_chunk(
|
2024-03-15 23:28:36 +00:00
|
|
|
_dict: Mapping[str, Any], default_class: Type[BaseMessageChunk]
|
2024-02-13 18:55:14 +00:00
|
|
|
) -> BaseMessageChunk:
|
|
|
|
role = _dict.get("role")
|
|
|
|
content = _dict.get("content") or ""
|
|
|
|
|
|
|
|
if role == "user" or default_class == HumanMessageChunk:
|
|
|
|
return HumanMessageChunk(content=content)
|
|
|
|
elif role == "assistant" or default_class == AIMessageChunk:
|
|
|
|
return AIMessageChunk(content=content)
|
|
|
|
elif role == "system" or default_class == SystemMessageChunk:
|
|
|
|
return SystemMessageChunk(content=content)
|
|
|
|
elif role or default_class == ChatMessageChunk:
|
|
|
|
return ChatMessageChunk(content=content, role=role)
|
|
|
|
else:
|
|
|
|
return default_class(content=content)
|
|
|
|
|
|
|
|
|
2024-03-15 23:28:36 +00:00
|
|
|
def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
|
2024-02-13 18:55:14 +00:00
|
|
|
role = _dict.get("role")
|
|
|
|
if role == "user":
|
2024-03-15 23:28:36 +00:00
|
|
|
return HumanMessage(content=_dict.get("content", ""))
|
2024-02-13 18:55:14 +00:00
|
|
|
elif role == "assistant":
|
2024-03-15 23:28:36 +00:00
|
|
|
return AIMessage(content=_dict.get("content", ""))
|
2024-02-13 18:55:14 +00:00
|
|
|
elif role == "system":
|
2024-03-15 23:28:36 +00:00
|
|
|
return SystemMessage(content=_dict.get("content", ""))
|
2024-02-13 18:55:14 +00:00
|
|
|
else:
|
2024-03-15 23:28:36 +00:00
|
|
|
return ChatMessage(content=_dict.get("content", ""), role=role)
|
2024-02-13 18:55:14 +00:00
|
|
|
|
|
|
|
|
|
|
|
def _convert_message_to_dict(message: BaseMessage) -> dict:
|
|
|
|
"""Convert a LangChain message to a dictionary.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
message: The LangChain message.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
The dictionary.
|
|
|
|
"""
|
|
|
|
message_dict: Dict[str, Any]
|
|
|
|
if isinstance(message, ChatMessage):
|
|
|
|
message_dict = {"role": message.role, "content": message.content}
|
|
|
|
elif isinstance(message, HumanMessage):
|
|
|
|
message_dict = {"role": "user", "content": message.content}
|
|
|
|
elif isinstance(message, AIMessage):
|
|
|
|
message_dict = {"role": "assistant", "content": message.content}
|
|
|
|
elif isinstance(message, SystemMessage):
|
|
|
|
message_dict = {"role": "system", "content": message.content}
|
|
|
|
elif isinstance(message, FunctionMessage):
|
|
|
|
message_dict = {
|
|
|
|
"role": "function",
|
|
|
|
"name": message.name,
|
|
|
|
"content": message.content,
|
|
|
|
}
|
|
|
|
else:
|
|
|
|
raise ValueError(f"Got unknown type {message}")
|
|
|
|
if "name" in message.additional_kwargs:
|
|
|
|
message_dict["name"] = message.additional_kwargs["name"]
|
|
|
|
return message_dict
|