langchain/libs/community/langchain_community/chat_models/sparkllm.py

493 lines
16 KiB
Python
Raw Normal View History

import base64
import hashlib
import hmac
import json
import logging
import queue
import threading
from datetime import datetime
from queue import Queue
from time import mktime
from typing import Any, Dict, Generator, Iterator, List, Mapping, Optional, Type
from urllib.parse import urlencode, urlparse, urlunparse
from wsgiref.handlers import format_date_time
from langchain_core.callbacks import (
CallbackManagerForLLMRun,
)
from langchain_core.language_models.chat_models import (
BaseChatModel,
generate_from_stream,
)
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
BaseMessageChunk,
ChatMessage,
ChatMessageChunk,
HumanMessage,
HumanMessageChunk,
SystemMessage,
)
from langchain_core.outputs import (
ChatGeneration,
ChatGenerationChunk,
ChatResult,
)
from langchain_core.pydantic_v1 import Field, root_validator
from langchain_core.utils import (
get_from_dict_or_env,
get_pydantic_field_names,
)
logger = logging.getLogger(__name__)
def _convert_message_to_dict(message: BaseMessage) -> dict:
if isinstance(message, ChatMessage):
message_dict = {"role": "user", "content": message.content}
elif isinstance(message, HumanMessage):
message_dict = {"role": "user", "content": message.content}
elif isinstance(message, AIMessage):
message_dict = {"role": "assistant", "content": message.content}
elif isinstance(message, SystemMessage):
message_dict = {"role": "system", "content": message.content}
else:
raise ValueError(f"Got unknown type {message}")
return message_dict
def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
msg_role = _dict["role"]
msg_content = _dict["content"]
if msg_role == "user":
return HumanMessage(content=msg_content)
elif msg_role == "assistant":
content = msg_content or ""
return AIMessage(content=content)
elif msg_role == "system":
return SystemMessage(content=msg_content)
else:
return ChatMessage(content=msg_content, role=msg_role)
def _convert_delta_to_message_chunk(
_dict: Mapping[str, Any], default_class: Type[BaseMessageChunk]
) -> BaseMessageChunk:
msg_role = _dict["role"]
msg_content = _dict.get("content", "")
if msg_role == "user" or default_class == HumanMessageChunk:
return HumanMessageChunk(content=msg_content)
elif msg_role == "assistant" or default_class == AIMessageChunk:
return AIMessageChunk(content=msg_content)
elif msg_role or default_class == ChatMessageChunk:
return ChatMessageChunk(content=msg_content, role=msg_role)
else:
return default_class(content=msg_content)
class ChatSparkLLM(BaseChatModel):
"""iFlyTek Spark large language model.
To use, you should pass `app_id`, `api_key`, `api_secret`
as a named parameter to the constructor OR set environment
variables ``IFLYTEK_SPARK_APP_ID``, ``IFLYTEK_SPARK_API_KEY`` and
``IFLYTEK_SPARK_API_SECRET``
Example:
.. code-block:: python
client = ChatSparkLLM(
spark_app_id="<app_id>",
spark_api_key="<api_key>",
spark_api_secret="<api_secret>"
)
Extra infos:
1. Get app_id, api_key, api_secret from the iFlyTek Open Platform Console:
https://console.xfyun.cn/services/bm35
2. By default, iFlyTek Spark LLM V3.0 is invoked.
If you need to invoke other versions, please configure the corresponding
parameters(spark_api_url and spark_llm_domain) according to the document:
https://www.xfyun.cn/doc/spark/Web.html
3. It is necessary to ensure that the app_id used has a license for
the corresponding model version.
4. If you encounter problems during use, try getting help at:
https://console.xfyun.cn/workorder/commit
"""
@classmethod
def is_lc_serializable(cls) -> bool:
"""Return whether this model can be serialized by Langchain."""
return False
@property
def lc_secrets(self) -> Dict[str, str]:
return {
"spark_app_id": "IFLYTEK_SPARK_APP_ID",
"spark_api_key": "IFLYTEK_SPARK_API_KEY",
"spark_api_secret": "IFLYTEK_SPARK_API_SECRET",
"spark_api_url": "IFLYTEK_SPARK_API_URL",
"spark_llm_domain": "IFLYTEK_SPARK_LLM_DOMAIN",
}
client: Any = None #: :meta private:
spark_app_id: Optional[str] = None
spark_api_key: Optional[str] = None
spark_api_secret: Optional[str] = None
spark_api_url: Optional[str] = None
spark_llm_domain: Optional[str] = None
spark_user_id: str = "lc_user"
streaming: bool = False
request_timeout: int = Field(30, alias="timeout")
temperature: float = 0.5
top_k: int = 4
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
class Config:
"""Configuration for this pydantic object."""
allow_population_by_field_name = True
@root_validator(pre=True)
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = get_pydantic_field_names(cls)
extra = values.get("model_kwargs", {})
for field_name in list(values):
if field_name in extra:
raise ValueError(f"Found {field_name} supplied twice.")
if field_name not in all_required_field_names:
logger.warning(
f"""WARNING! {field_name} is not default parameter.
{field_name} was transferred to model_kwargs.
Please confirm that {field_name} is what you intended."""
)
extra[field_name] = values.pop(field_name)
invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
if invalid_model_kwargs:
raise ValueError(
f"Parameters {invalid_model_kwargs} should be specified explicitly. "
f"Instead they were passed in as part of `model_kwargs` parameter."
)
values["model_kwargs"] = extra
return values
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
values["spark_app_id"] = get_from_dict_or_env(
values,
"spark_app_id",
"IFLYTEK_SPARK_APP_ID",
)
values["spark_api_key"] = get_from_dict_or_env(
values,
"spark_api_key",
"IFLYTEK_SPARK_API_KEY",
)
values["spark_api_secret"] = get_from_dict_or_env(
values,
"spark_api_secret",
"IFLYTEK_SPARK_API_SECRET",
)
values["spark_api_url"] = get_from_dict_or_env(
values,
"spark_api_url",
"IFLYTEK_SPARK_API_URL",
"wss://spark-api.xf-yun.com/v3.1/chat",
)
values["spark_llm_domain"] = get_from_dict_or_env(
values,
"spark_llm_domain",
"IFLYTEK_SPARK_LLM_DOMAIN",
"generalv3",
)
# put extra params into model_kwargs
values["model_kwargs"]["temperature"] = values["temperature"] or cls.temperature
values["model_kwargs"]["top_k"] = values["top_k"] or cls.top_k
values["client"] = _SparkLLMClient(
app_id=values["spark_app_id"],
api_key=values["spark_api_key"],
api_secret=values["spark_api_secret"],
api_url=values["spark_api_url"],
spark_domain=values["spark_llm_domain"],
model_kwargs=values["model_kwargs"],
)
return values
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
default_chunk_class = AIMessageChunk
self.client.arun(
[_convert_message_to_dict(m) for m in messages],
self.spark_user_id,
self.model_kwargs,
self.streaming,
)
for content in self.client.subscribe(timeout=self.request_timeout):
if "data" not in content:
continue
delta = content["data"]
chunk = _convert_delta_to_message_chunk(delta, default_chunk_class)
cg_chunk = ChatGenerationChunk(message=chunk)
if run_manager:
run_manager.on_llm_new_token(str(chunk.content), chunk=cg_chunk)
yield cg_chunk
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
if self.streaming:
stream_iter = self._stream(
messages=messages, stop=stop, run_manager=run_manager, **kwargs
)
return generate_from_stream(stream_iter)
self.client.arun(
[_convert_message_to_dict(m) for m in messages],
self.spark_user_id,
self.model_kwargs,
False,
)
completion = {}
llm_output = {}
for content in self.client.subscribe(timeout=self.request_timeout):
if "usage" in content:
llm_output["token_usage"] = content["usage"]
if "data" not in content:
continue
completion = content["data"]
message = _convert_dict_to_message(completion)
generations = [ChatGeneration(message=message)]
return ChatResult(generations=generations, llm_output=llm_output)
@property
def _llm_type(self) -> str:
return "spark-llm-chat"
class _SparkLLMClient:
"""
Use websocket-client to call the SparkLLM interface provided by Xfyun,
which is the iFlyTek's open platform for AI capabilities
"""
def __init__(
self,
app_id: str,
api_key: str,
api_secret: str,
api_url: Optional[str] = None,
spark_domain: Optional[str] = None,
model_kwargs: Optional[dict] = None,
):
try:
import websocket
self.websocket_client = websocket
except ImportError:
raise ImportError(
"Could not import websocket client python package. "
"Please install it with `pip install websocket-client`."
)
self.api_url = (
"wss://spark-api.xf-yun.com/v3.1/chat" if not api_url else api_url
)
self.app_id = app_id
self.model_kwargs = model_kwargs
self.spark_domain = spark_domain or "generalv3"
self.queue: Queue[Dict] = Queue()
self.blocking_message = {"content": "", "role": "assistant"}
self.api_key = api_key
self.api_secret = api_secret
@staticmethod
def _create_url(api_url: str, api_key: str, api_secret: str) -> str:
"""
Generate a request url with an api key and an api secret.
"""
# generate timestamp by RFC1123
date = format_date_time(mktime(datetime.now().timetuple()))
# urlparse
parsed_url = urlparse(api_url)
host = parsed_url.netloc
path = parsed_url.path
signature_origin = f"host: {host}\ndate: {date}\nGET {path} HTTP/1.1"
# encrypt using hmac-sha256
signature_sha = hmac.new(
api_secret.encode("utf-8"),
signature_origin.encode("utf-8"),
digestmod=hashlib.sha256,
).digest()
signature_sha_base64 = base64.b64encode(signature_sha).decode(encoding="utf-8")
authorization_origin = f'api_key="{api_key}", algorithm="hmac-sha256", \
headers="host date request-line", signature="{signature_sha_base64}"'
authorization = base64.b64encode(authorization_origin.encode("utf-8")).decode(
encoding="utf-8"
)
# generate url
params_dict = {"authorization": authorization, "date": date, "host": host}
encoded_params = urlencode(params_dict)
url = urlunparse(
(
parsed_url.scheme,
parsed_url.netloc,
parsed_url.path,
parsed_url.params,
encoded_params,
parsed_url.fragment,
)
)
return url
def run(
self,
messages: List[Dict],
user_id: str,
model_kwargs: Optional[dict] = None,
streaming: bool = False,
) -> None:
self.websocket_client.enableTrace(False)
ws = self.websocket_client.WebSocketApp(
_SparkLLMClient._create_url(
self.api_url,
self.api_key,
self.api_secret,
),
on_message=self.on_message,
on_error=self.on_error,
on_close=self.on_close,
on_open=self.on_open,
)
ws.messages = messages
ws.user_id = user_id
ws.model_kwargs = self.model_kwargs if model_kwargs is None else model_kwargs
ws.streaming = streaming
ws.run_forever()
def arun(
self,
messages: List[Dict],
user_id: str,
model_kwargs: Optional[dict] = None,
streaming: bool = False,
) -> threading.Thread:
ws_thread = threading.Thread(
target=self.run,
args=(
messages,
user_id,
model_kwargs,
streaming,
),
)
ws_thread.start()
return ws_thread
def on_error(self, ws: Any, error: Optional[Any]) -> None:
self.queue.put({"error": error})
ws.close()
def on_close(self, ws: Any, close_status_code: int, close_reason: str) -> None:
logger.debug(
{
"log": {
"close_status_code": close_status_code,
"close_reason": close_reason,
}
}
)
self.queue.put({"done": True})
def on_open(self, ws: Any) -> None:
self.blocking_message = {"content": "", "role": "assistant"}
data = json.dumps(
self.gen_params(
messages=ws.messages, user_id=ws.user_id, model_kwargs=ws.model_kwargs
)
)
ws.send(data)
def on_message(self, ws: Any, message: str) -> None:
data = json.loads(message)
code = data["header"]["code"]
if code != 0:
self.queue.put(
{"error": f"Code: {code}, Error: {data['header']['message']}"}
)
ws.close()
else:
choices = data["payload"]["choices"]
status = choices["status"]
content = choices["text"][0]["content"]
if ws.streaming:
self.queue.put({"data": choices["text"][0]})
else:
self.blocking_message["content"] += content
if status == 2:
if not ws.streaming:
self.queue.put({"data": self.blocking_message})
usage_data = (
data.get("payload", {}).get("usage", {}).get("text", {})
if data
else {}
)
self.queue.put({"usage": usage_data})
ws.close()
def gen_params(
self, messages: list, user_id: str, model_kwargs: Optional[dict] = None
) -> dict:
data: Dict = {
"header": {"app_id": self.app_id, "uid": user_id},
"parameter": {"chat": {"domain": self.spark_domain}},
"payload": {"message": {"text": messages}},
}
if model_kwargs:
data["parameter"]["chat"].update(model_kwargs)
logger.debug(f"Spark Request Parameters: {data}")
return data
def subscribe(self, timeout: Optional[int] = 30) -> Generator[Dict, None, None]:
while True:
try:
content = self.queue.get(timeout=timeout)
except queue.Empty as _:
raise TimeoutError(
f"SparkLLMClient wait LLM api response timeout {timeout} seconds"
)
if "error" in content:
raise ConnectionError(content["error"])
if "usage" in content:
yield content
continue
if "done" in content:
break
if "data" not in content:
break
yield content