2024-03-29 08:54:23 +00:00
|
|
|
"""Wrapper around Moonshot chat models."""
|
|
|
|
from typing import Dict
|
|
|
|
|
|
|
|
from langchain_core.pydantic_v1 import root_validator
|
|
|
|
from langchain_core.utils import get_from_dict_or_env
|
|
|
|
|
|
|
|
from langchain_community.chat_models import ChatOpenAI
|
|
|
|
from langchain_community.llms.moonshot import MOONSHOT_SERVICE_URL_BASE, MoonshotCommon
|
|
|
|
|
|
|
|
|
2024-04-10 17:01:19 +00:00
|
|
|
class MoonshotChat(MoonshotCommon, ChatOpenAI): # type: ignore[misc]
|
2024-04-11 20:23:27 +00:00
|
|
|
"""Moonshot large language models.
|
2024-03-29 08:54:23 +00:00
|
|
|
|
|
|
|
To use, you should have the ``openai`` python package installed, and the
|
|
|
|
environment variable ``MOONSHOT_API_KEY`` set with your API key.
|
|
|
|
(Moonshot's chat API is compatible with OpenAI's SDK.)
|
|
|
|
|
|
|
|
Referenced from https://platform.moonshot.cn/docs
|
|
|
|
|
|
|
|
Example:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
from langchain_community.chat_models.moonshot import MoonshotChat
|
|
|
|
|
|
|
|
moonshot = MoonshotChat(model="moonshot-v1-8k")
|
|
|
|
"""
|
|
|
|
|
|
|
|
@root_validator()
|
|
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
|
|
"""Validate that the environment is set up correctly."""
|
|
|
|
values["moonshot_api_key"] = get_from_dict_or_env(
|
|
|
|
values, "moonshot_api_key", "MOONSHOT_API_KEY"
|
|
|
|
)
|
|
|
|
|
|
|
|
try:
|
|
|
|
import openai
|
|
|
|
|
|
|
|
except ImportError:
|
|
|
|
raise ImportError(
|
|
|
|
"Could not import openai python package. "
|
|
|
|
"Please install it with `pip install openai`."
|
|
|
|
)
|
|
|
|
|
|
|
|
client_params = {
|
|
|
|
"api_key": values["moonshot_api_key"],
|
|
|
|
"base_url": values["base_url"]
|
|
|
|
if "base_url" in values
|
|
|
|
else MOONSHOT_SERVICE_URL_BASE,
|
|
|
|
}
|
|
|
|
|
|
|
|
if not values.get("client"):
|
|
|
|
values["client"] = openai.OpenAI(**client_params).chat.completions
|
|
|
|
if not values.get("async_client"):
|
|
|
|
values["async_client"] = openai.AsyncOpenAI(
|
|
|
|
**client_params
|
|
|
|
).chat.completions
|
|
|
|
|
|
|
|
return values
|