2023-12-11 21:53:30 +00:00
|
|
|
"""JinaChat wrapper."""
|
|
|
|
from __future__ import annotations
|
|
|
|
|
|
|
|
import logging
|
|
|
|
from typing import (
|
|
|
|
Any,
|
|
|
|
AsyncIterator,
|
|
|
|
Callable,
|
|
|
|
Dict,
|
|
|
|
Iterator,
|
|
|
|
List,
|
|
|
|
Mapping,
|
|
|
|
Optional,
|
|
|
|
Tuple,
|
|
|
|
Type,
|
|
|
|
Union,
|
|
|
|
)
|
|
|
|
|
|
|
|
from langchain_core.callbacks import (
|
|
|
|
AsyncCallbackManagerForLLMRun,
|
|
|
|
CallbackManagerForLLMRun,
|
|
|
|
)
|
|
|
|
from langchain_core.language_models.chat_models import (
|
|
|
|
BaseChatModel,
|
|
|
|
agenerate_from_stream,
|
|
|
|
generate_from_stream,
|
|
|
|
)
|
|
|
|
from langchain_core.messages import (
|
|
|
|
AIMessage,
|
|
|
|
AIMessageChunk,
|
|
|
|
BaseMessage,
|
|
|
|
BaseMessageChunk,
|
|
|
|
ChatMessage,
|
|
|
|
ChatMessageChunk,
|
|
|
|
FunctionMessage,
|
|
|
|
HumanMessage,
|
|
|
|
HumanMessageChunk,
|
|
|
|
SystemMessage,
|
|
|
|
SystemMessageChunk,
|
|
|
|
)
|
|
|
|
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
|
|
|
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
|
|
|
|
from langchain_core.utils import (
|
|
|
|
convert_to_secret_str,
|
|
|
|
get_from_dict_or_env,
|
|
|
|
get_pydantic_field_names,
|
|
|
|
)
|
|
|
|
from tenacity import (
|
|
|
|
before_sleep_log,
|
|
|
|
retry,
|
|
|
|
retry_if_exception_type,
|
|
|
|
stop_after_attempt,
|
|
|
|
wait_exponential,
|
|
|
|
)
|
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
def _create_retry_decorator(llm: JinaChat) -> Callable[[Any], Any]:
|
|
|
|
import openai
|
|
|
|
|
|
|
|
min_seconds = 1
|
|
|
|
max_seconds = 60
|
|
|
|
# Wait 2^x * 1 second between each retry starting with
|
|
|
|
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
|
|
|
|
return retry(
|
|
|
|
reraise=True,
|
|
|
|
stop=stop_after_attempt(llm.max_retries),
|
|
|
|
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
|
|
|
|
retry=(
|
|
|
|
retry_if_exception_type(openai.error.Timeout)
|
|
|
|
| retry_if_exception_type(openai.error.APIError)
|
|
|
|
| retry_if_exception_type(openai.error.APIConnectionError)
|
|
|
|
| retry_if_exception_type(openai.error.RateLimitError)
|
|
|
|
| retry_if_exception_type(openai.error.ServiceUnavailableError)
|
|
|
|
),
|
|
|
|
before_sleep=before_sleep_log(logger, logging.WARNING),
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
async def acompletion_with_retry(llm: JinaChat, **kwargs: Any) -> Any:
|
|
|
|
"""Use tenacity to retry the async completion call."""
|
|
|
|
retry_decorator = _create_retry_decorator(llm)
|
|
|
|
|
|
|
|
@retry_decorator
|
|
|
|
async def _completion_with_retry(**kwargs: Any) -> Any:
|
|
|
|
# Use OpenAI's async api https://github.com/openai/openai-python#async-api
|
|
|
|
return await llm.client.acreate(**kwargs)
|
|
|
|
|
|
|
|
return await _completion_with_retry(**kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
def _convert_delta_to_message_chunk(
|
|
|
|
_dict: Mapping[str, Any], default_class: Type[BaseMessageChunk]
|
|
|
|
) -> BaseMessageChunk:
|
|
|
|
role = _dict.get("role")
|
|
|
|
content = _dict.get("content") or ""
|
|
|
|
|
|
|
|
if role == "user" or default_class == HumanMessageChunk:
|
|
|
|
return HumanMessageChunk(content=content)
|
|
|
|
elif role == "assistant" or default_class == AIMessageChunk:
|
|
|
|
return AIMessageChunk(content=content)
|
|
|
|
elif role == "system" or default_class == SystemMessageChunk:
|
|
|
|
return SystemMessageChunk(content=content)
|
|
|
|
elif role or default_class == ChatMessageChunk:
|
|
|
|
return ChatMessageChunk(content=content, role=role)
|
|
|
|
else:
|
|
|
|
return default_class(content=content)
|
|
|
|
|
|
|
|
|
|
|
|
def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
|
|
|
|
role = _dict["role"]
|
|
|
|
if role == "user":
|
|
|
|
return HumanMessage(content=_dict["content"])
|
|
|
|
elif role == "assistant":
|
|
|
|
content = _dict["content"] or ""
|
|
|
|
return AIMessage(content=content)
|
|
|
|
elif role == "system":
|
|
|
|
return SystemMessage(content=_dict["content"])
|
|
|
|
else:
|
|
|
|
return ChatMessage(content=_dict["content"], role=role)
|
|
|
|
|
|
|
|
|
|
|
|
def _convert_message_to_dict(message: BaseMessage) -> dict:
|
|
|
|
if isinstance(message, ChatMessage):
|
|
|
|
message_dict = {"role": message.role, "content": message.content}
|
|
|
|
elif isinstance(message, HumanMessage):
|
|
|
|
message_dict = {"role": "user", "content": message.content}
|
|
|
|
elif isinstance(message, AIMessage):
|
|
|
|
message_dict = {"role": "assistant", "content": message.content}
|
|
|
|
elif isinstance(message, SystemMessage):
|
|
|
|
message_dict = {"role": "system", "content": message.content}
|
|
|
|
elif isinstance(message, FunctionMessage):
|
|
|
|
message_dict = {
|
|
|
|
"role": "function",
|
|
|
|
"name": message.name,
|
|
|
|
"content": message.content,
|
|
|
|
}
|
|
|
|
else:
|
|
|
|
raise ValueError(f"Got unknown type {message}")
|
|
|
|
if "name" in message.additional_kwargs:
|
|
|
|
message_dict["name"] = message.additional_kwargs["name"]
|
|
|
|
return message_dict
|
|
|
|
|
|
|
|
|
|
|
|
class JinaChat(BaseChatModel):
|
|
|
|
"""`Jina AI` Chat models API.
|
|
|
|
|
|
|
|
To use, you should have the ``openai`` python package installed, and the
|
|
|
|
environment variable ``JINACHAT_API_KEY`` set to your API key, which you
|
|
|
|
can generate at https://chat.jina.ai/api.
|
|
|
|
|
|
|
|
Any parameters that are valid to be passed to the openai.create call can be passed
|
|
|
|
in, even if not explicitly saved on this class.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
from langchain_community.chat_models import JinaChat
|
|
|
|
chat = JinaChat()
|
|
|
|
"""
|
|
|
|
|
|
|
|
@property
|
|
|
|
def lc_secrets(self) -> Dict[str, str]:
|
|
|
|
return {"jinachat_api_key": "JINACHAT_API_KEY"}
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def is_lc_serializable(cls) -> bool:
|
|
|
|
"""Return whether this model can be serialized by Langchain."""
|
|
|
|
return False
|
|
|
|
|
|
|
|
client: Any #: :meta private:
|
|
|
|
temperature: float = 0.7
|
|
|
|
"""What sampling temperature to use."""
|
|
|
|
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
|
|
|
"""Holds any model parameters valid for `create` call not explicitly specified."""
|
|
|
|
jinachat_api_key: Optional[SecretStr] = None
|
|
|
|
"""Base URL path for API requests,
|
|
|
|
leave blank if not using a proxy or service emulator."""
|
|
|
|
request_timeout: Optional[Union[float, Tuple[float, float]]] = None
|
|
|
|
"""Timeout for requests to JinaChat completion API. Default is 600 seconds."""
|
|
|
|
max_retries: int = 6
|
|
|
|
"""Maximum number of retries to make when generating."""
|
|
|
|
streaming: bool = False
|
|
|
|
"""Whether to stream the results or not."""
|
|
|
|
max_tokens: Optional[int] = None
|
|
|
|
"""Maximum number of tokens to generate."""
|
|
|
|
|
|
|
|
class Config:
|
|
|
|
"""Configuration for this pydantic object."""
|
|
|
|
|
|
|
|
allow_population_by_field_name = True
|
|
|
|
|
|
|
|
@root_validator(pre=True)
|
|
|
|
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
|
|
|
"""Build extra kwargs from additional params that were passed in."""
|
|
|
|
all_required_field_names = get_pydantic_field_names(cls)
|
|
|
|
extra = values.get("model_kwargs", {})
|
|
|
|
for field_name in list(values):
|
|
|
|
if field_name in extra:
|
|
|
|
raise ValueError(f"Found {field_name} supplied twice.")
|
|
|
|
if field_name not in all_required_field_names:
|
|
|
|
logger.warning(
|
|
|
|
f"""WARNING! {field_name} is not default parameter.
|
|
|
|
{field_name} was transferred to model_kwargs.
|
|
|
|
Please confirm that {field_name} is what you intended."""
|
|
|
|
)
|
|
|
|
extra[field_name] = values.pop(field_name)
|
|
|
|
|
|
|
|
invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
|
|
|
|
if invalid_model_kwargs:
|
|
|
|
raise ValueError(
|
|
|
|
f"Parameters {invalid_model_kwargs} should be specified explicitly. "
|
|
|
|
f"Instead they were passed in as part of `model_kwargs` parameter."
|
|
|
|
)
|
|
|
|
|
|
|
|
values["model_kwargs"] = extra
|
|
|
|
return values
|
|
|
|
|
|
|
|
@root_validator()
|
|
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
|
|
"""Validate that api key and python package exists in environment."""
|
|
|
|
values["jinachat_api_key"] = convert_to_secret_str(
|
|
|
|
get_from_dict_or_env(values, "jinachat_api_key", "JINACHAT_API_KEY")
|
|
|
|
)
|
|
|
|
try:
|
|
|
|
import openai
|
|
|
|
|
|
|
|
except ImportError:
|
|
|
|
raise ValueError(
|
|
|
|
"Could not import openai python package. "
|
|
|
|
"Please install it with `pip install openai`."
|
|
|
|
)
|
|
|
|
try:
|
|
|
|
values["client"] = openai.ChatCompletion
|
|
|
|
except AttributeError:
|
|
|
|
raise ValueError(
|
|
|
|
"`openai` has no `ChatCompletion` attribute, this is likely "
|
|
|
|
"due to an old version of the openai package. Try upgrading it "
|
|
|
|
"with `pip install --upgrade openai`."
|
|
|
|
)
|
|
|
|
return values
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _default_params(self) -> Dict[str, Any]:
|
|
|
|
"""Get the default parameters for calling JinaChat API."""
|
|
|
|
return {
|
|
|
|
"request_timeout": self.request_timeout,
|
|
|
|
"max_tokens": self.max_tokens,
|
|
|
|
"stream": self.streaming,
|
|
|
|
"temperature": self.temperature,
|
|
|
|
**self.model_kwargs,
|
|
|
|
}
|
|
|
|
|
|
|
|
def _create_retry_decorator(self) -> Callable[[Any], Any]:
|
|
|
|
import openai
|
|
|
|
|
|
|
|
min_seconds = 1
|
|
|
|
max_seconds = 60
|
|
|
|
# Wait 2^x * 1 second between each retry starting with
|
|
|
|
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
|
|
|
|
return retry(
|
|
|
|
reraise=True,
|
|
|
|
stop=stop_after_attempt(self.max_retries),
|
|
|
|
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
|
|
|
|
retry=(
|
|
|
|
retry_if_exception_type(openai.error.Timeout)
|
|
|
|
| retry_if_exception_type(openai.error.APIError)
|
|
|
|
| retry_if_exception_type(openai.error.APIConnectionError)
|
|
|
|
| retry_if_exception_type(openai.error.RateLimitError)
|
|
|
|
| retry_if_exception_type(openai.error.ServiceUnavailableError)
|
|
|
|
),
|
|
|
|
before_sleep=before_sleep_log(logger, logging.WARNING),
|
|
|
|
)
|
|
|
|
|
|
|
|
def completion_with_retry(self, **kwargs: Any) -> Any:
|
|
|
|
"""Use tenacity to retry the completion call."""
|
|
|
|
retry_decorator = self._create_retry_decorator()
|
|
|
|
|
|
|
|
@retry_decorator
|
|
|
|
def _completion_with_retry(**kwargs: Any) -> Any:
|
|
|
|
return self.client.create(**kwargs)
|
|
|
|
|
|
|
|
return _completion_with_retry(**kwargs)
|
|
|
|
|
|
|
|
def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict:
|
|
|
|
overall_token_usage: dict = {}
|
|
|
|
for output in llm_outputs:
|
|
|
|
if output is None:
|
|
|
|
# Happens in streaming
|
|
|
|
continue
|
|
|
|
token_usage = output["token_usage"]
|
|
|
|
for k, v in token_usage.items():
|
|
|
|
if k in overall_token_usage:
|
|
|
|
overall_token_usage[k] += v
|
|
|
|
else:
|
|
|
|
overall_token_usage[k] = v
|
|
|
|
return {"token_usage": overall_token_usage}
|
|
|
|
|
|
|
|
def _stream(
|
|
|
|
self,
|
|
|
|
messages: List[BaseMessage],
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> Iterator[ChatGenerationChunk]:
|
|
|
|
message_dicts, params = self._create_message_dicts(messages, stop)
|
|
|
|
params = {**params, **kwargs, "stream": True}
|
|
|
|
|
|
|
|
default_chunk_class = AIMessageChunk
|
|
|
|
for chunk in self.completion_with_retry(messages=message_dicts, **params):
|
|
|
|
delta = chunk["choices"][0]["delta"]
|
|
|
|
chunk = _convert_delta_to_message_chunk(delta, default_chunk_class)
|
|
|
|
default_chunk_class = chunk.__class__
|
2024-02-21 23:32:28 +00:00
|
|
|
cg_chunk = ChatGenerationChunk(message=chunk)
|
2023-12-11 21:53:30 +00:00
|
|
|
if run_manager:
|
2024-02-21 23:32:28 +00:00
|
|
|
run_manager.on_llm_new_token(chunk.content, chunk=cg_chunk)
|
2024-02-23 00:15:21 +00:00
|
|
|
yield cg_chunk
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
def _generate(
|
|
|
|
self,
|
|
|
|
messages: List[BaseMessage],
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> ChatResult:
|
|
|
|
if self.streaming:
|
|
|
|
stream_iter = self._stream(
|
|
|
|
messages=messages, stop=stop, run_manager=run_manager, **kwargs
|
|
|
|
)
|
|
|
|
return generate_from_stream(stream_iter)
|
|
|
|
|
|
|
|
message_dicts, params = self._create_message_dicts(messages, stop)
|
|
|
|
params = {**params, **kwargs}
|
|
|
|
response = self.completion_with_retry(messages=message_dicts, **params)
|
|
|
|
return self._create_chat_result(response)
|
|
|
|
|
|
|
|
def _create_message_dicts(
|
|
|
|
self, messages: List[BaseMessage], stop: Optional[List[str]]
|
|
|
|
) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
|
|
|
|
params = dict(self._invocation_params)
|
|
|
|
if stop is not None:
|
|
|
|
if "stop" in params:
|
|
|
|
raise ValueError("`stop` found in both the input and default params.")
|
|
|
|
params["stop"] = stop
|
|
|
|
message_dicts = [_convert_message_to_dict(m) for m in messages]
|
|
|
|
return message_dicts, params
|
|
|
|
|
|
|
|
def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult:
|
|
|
|
generations = []
|
|
|
|
for res in response["choices"]:
|
|
|
|
message = _convert_dict_to_message(res["message"])
|
|
|
|
gen = ChatGeneration(message=message)
|
|
|
|
generations.append(gen)
|
|
|
|
llm_output = {"token_usage": response["usage"]}
|
|
|
|
return ChatResult(generations=generations, llm_output=llm_output)
|
|
|
|
|
|
|
|
async def _astream(
|
|
|
|
self,
|
|
|
|
messages: List[BaseMessage],
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> AsyncIterator[ChatGenerationChunk]:
|
|
|
|
message_dicts, params = self._create_message_dicts(messages, stop)
|
|
|
|
params = {**params, **kwargs, "stream": True}
|
|
|
|
|
|
|
|
default_chunk_class = AIMessageChunk
|
|
|
|
async for chunk in await acompletion_with_retry(
|
|
|
|
self, messages=message_dicts, **params
|
|
|
|
):
|
|
|
|
delta = chunk["choices"][0]["delta"]
|
|
|
|
chunk = _convert_delta_to_message_chunk(delta, default_chunk_class)
|
|
|
|
default_chunk_class = chunk.__class__
|
2024-02-21 23:32:28 +00:00
|
|
|
cg_chunk = ChatGenerationChunk(message=chunk)
|
2023-12-11 21:53:30 +00:00
|
|
|
if run_manager:
|
2024-02-21 23:32:28 +00:00
|
|
|
await run_manager.on_llm_new_token(chunk.content, chunk=cg_chunk)
|
2024-02-23 00:15:21 +00:00
|
|
|
yield cg_chunk
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
async def _agenerate(
|
|
|
|
self,
|
|
|
|
messages: List[BaseMessage],
|
|
|
|
stop: Optional[List[str]] = None,
|
|
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> ChatResult:
|
|
|
|
if self.streaming:
|
|
|
|
stream_iter = self._astream(
|
|
|
|
messages=messages, stop=stop, run_manager=run_manager, **kwargs
|
|
|
|
)
|
|
|
|
return await agenerate_from_stream(stream_iter)
|
|
|
|
|
|
|
|
message_dicts, params = self._create_message_dicts(messages, stop)
|
|
|
|
params = {**params, **kwargs}
|
|
|
|
response = await acompletion_with_retry(self, messages=message_dicts, **params)
|
|
|
|
return self._create_chat_result(response)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _invocation_params(self) -> Mapping[str, Any]:
|
|
|
|
"""Get the parameters used to invoke the model."""
|
|
|
|
jinachat_creds: Dict[str, Any] = {
|
|
|
|
"api_key": self.jinachat_api_key
|
|
|
|
and self.jinachat_api_key.get_secret_value(),
|
|
|
|
"api_base": "https://api.chat.jina.ai/v1",
|
|
|
|
"model": "jinachat",
|
|
|
|
}
|
|
|
|
return {**jinachat_creds, **self._default_params}
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _llm_type(self) -> str:
|
|
|
|
"""Return type of chat model."""
|
|
|
|
return "jinachat"
|