2023-12-11 21:53:30 +00:00
|
|
|
from __future__ import annotations
|
|
|
|
|
|
|
|
import logging
|
|
|
|
from typing import TYPE_CHECKING, Dict, Iterable, Iterator, List, Optional, Union, cast
|
|
|
|
|
|
|
|
from langchain_core.chat_sessions import ChatSession
|
2024-01-08 04:54:45 +00:00
|
|
|
from langchain_core.load.load import load
|
2023-12-11 21:53:30 +00:00
|
|
|
|
|
|
|
from langchain_community.chat_loaders.base import BaseChatLoader
|
|
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
|
|
from langsmith.client import Client
|
|
|
|
from langsmith.schemas import Run
|
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
class LangSmithRunChatLoader(BaseChatLoader):
|
|
|
|
"""
|
|
|
|
Load chat sessions from a list of LangSmith "llm" runs.
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
runs (Iterable[Union[str, Run]]): The list of LLM run IDs or run objects.
|
|
|
|
client (Client): Instance of LangSmith client for fetching data.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self, runs: Iterable[Union[str, Run]], client: Optional["Client"] = None
|
|
|
|
):
|
|
|
|
"""
|
|
|
|
Initialize a new LangSmithRunChatLoader instance.
|
|
|
|
|
|
|
|
:param runs: List of LLM run IDs or run objects.
|
|
|
|
:param client: An instance of LangSmith client, if not provided,
|
|
|
|
a new client instance will be created.
|
|
|
|
"""
|
|
|
|
from langsmith.client import Client
|
|
|
|
|
|
|
|
self.runs = runs
|
|
|
|
self.client = client or Client()
|
|
|
|
|
|
|
|
def _load_single_chat_session(self, llm_run: "Run") -> ChatSession:
|
|
|
|
"""
|
|
|
|
Convert an individual LangSmith LLM run to a ChatSession.
|
|
|
|
|
|
|
|
:param llm_run: The LLM run object.
|
|
|
|
:return: A chat session representing the run's data.
|
|
|
|
"""
|
|
|
|
chat_session = LangSmithRunChatLoader._get_messages_from_llm_run(llm_run)
|
|
|
|
functions = LangSmithRunChatLoader._get_functions_from_llm_run(llm_run)
|
|
|
|
if functions:
|
|
|
|
chat_session["functions"] = functions
|
|
|
|
return chat_session
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _get_messages_from_llm_run(llm_run: "Run") -> ChatSession:
|
|
|
|
"""
|
|
|
|
Extract messages from a LangSmith LLM run.
|
|
|
|
|
|
|
|
:param llm_run: The LLM run object.
|
|
|
|
:return: ChatSession with the extracted messages.
|
|
|
|
"""
|
|
|
|
if llm_run.run_type != "llm":
|
|
|
|
raise ValueError(f"Expected run of type llm. Got: {llm_run.run_type}")
|
|
|
|
if "messages" not in llm_run.inputs:
|
|
|
|
raise ValueError(f"Run has no 'messages' inputs. Got {llm_run.inputs}")
|
|
|
|
if not llm_run.outputs:
|
|
|
|
raise ValueError("Cannot convert pending run")
|
2024-01-08 04:54:45 +00:00
|
|
|
messages = load(llm_run.inputs)["messages"]
|
|
|
|
message_chunk = load(llm_run.outputs)["generations"][0]["message"]
|
2023-12-11 21:53:30 +00:00
|
|
|
return ChatSession(messages=messages + [message_chunk])
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _get_functions_from_llm_run(llm_run: "Run") -> Optional[List[Dict]]:
|
|
|
|
"""
|
|
|
|
Extract functions from a LangSmith LLM run if they exist.
|
|
|
|
|
|
|
|
:param llm_run: The LLM run object.
|
|
|
|
:return: Functions from the run or None.
|
|
|
|
"""
|
|
|
|
if llm_run.run_type != "llm":
|
|
|
|
raise ValueError(f"Expected run of type llm. Got: {llm_run.run_type}")
|
|
|
|
return (llm_run.extra or {}).get("invocation_params", {}).get("functions")
|
|
|
|
|
|
|
|
def lazy_load(self) -> Iterator[ChatSession]:
|
|
|
|
"""
|
|
|
|
Lazy load the chat sessions from the iterable of run IDs.
|
|
|
|
|
|
|
|
This method fetches the runs and converts them to chat sessions on-the-fly,
|
|
|
|
yielding one session at a time.
|
|
|
|
|
|
|
|
:return: Iterator of chat sessions containing messages.
|
|
|
|
"""
|
|
|
|
from langsmith.schemas import Run
|
|
|
|
|
|
|
|
for run_obj in self.runs:
|
|
|
|
try:
|
|
|
|
if hasattr(run_obj, "id"):
|
|
|
|
run = run_obj
|
|
|
|
else:
|
|
|
|
run = self.client.read_run(run_obj)
|
|
|
|
session = self._load_single_chat_session(cast(Run, run))
|
|
|
|
yield session
|
|
|
|
except ValueError as e:
|
|
|
|
logger.warning(f"Could not load run {run_obj}: {repr(e)}")
|
|
|
|
continue
|
|
|
|
|
|
|
|
|
|
|
|
class LangSmithDatasetChatLoader(BaseChatLoader):
|
|
|
|
"""
|
|
|
|
Load chat sessions from a LangSmith dataset with the "chat" data type.
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
dataset_name (str): The name of the LangSmith dataset.
|
|
|
|
client (Client): Instance of LangSmith client for fetching data.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, *, dataset_name: str, client: Optional["Client"] = None):
|
|
|
|
"""
|
|
|
|
Initialize a new LangSmithChatDatasetLoader instance.
|
|
|
|
|
|
|
|
:param dataset_name: The name of the LangSmith dataset.
|
|
|
|
:param client: An instance of LangSmith client; if not provided,
|
|
|
|
a new client instance will be created.
|
|
|
|
"""
|
|
|
|
try:
|
|
|
|
from langsmith.client import Client
|
|
|
|
except ImportError as e:
|
|
|
|
raise ImportError(
|
|
|
|
"The LangSmith client is required to load LangSmith datasets.\n"
|
|
|
|
"Please install it with `pip install langsmith`"
|
|
|
|
) from e
|
|
|
|
|
|
|
|
self.dataset_name = dataset_name
|
|
|
|
self.client = client or Client()
|
|
|
|
|
|
|
|
def lazy_load(self) -> Iterator[ChatSession]:
|
|
|
|
"""
|
|
|
|
Lazy load the chat sessions from the specified LangSmith dataset.
|
|
|
|
|
|
|
|
This method fetches the chat data from the dataset and
|
|
|
|
converts each data point to chat sessions on-the-fly,
|
|
|
|
yielding one session at a time.
|
|
|
|
|
|
|
|
:return: Iterator of chat sessions containing messages.
|
|
|
|
"""
|
|
|
|
from langchain_community.adapters import openai as oai_adapter # noqa: E402
|
|
|
|
|
|
|
|
data = self.client.read_dataset_openai_finetuning(
|
|
|
|
dataset_name=self.dataset_name
|
|
|
|
)
|
|
|
|
for data_point in data:
|
|
|
|
yield ChatSession(
|
|
|
|
messages=[
|
|
|
|
oai_adapter.convert_dict_to_message(m)
|
|
|
|
for m in data_point.get("messages", [])
|
|
|
|
],
|
|
|
|
functions=data_point.get("functions"),
|
|
|
|
)
|