langchain/tests/unit_tests/agents/test_react.py

108 lines
3.5 KiB
Python
Raw Normal View History

"""Unit tests for ReAct."""
2022-11-09 06:17:10 +00:00
from typing import Any, List, Mapping, Optional, Union
from pydantic import BaseModel
2022-11-22 14:16:26 +00:00
from langchain.agents.react.base import ReActChain, ReActDocstoreAgent
from langchain.agents.tools import Tool
from langchain.docstore.base import Docstore
from langchain.docstore.document import Document
from langchain.llms.base import LLM
2022-11-20 04:32:45 +00:00
from langchain.prompts.prompt import PromptTemplate
2022-12-19 02:51:23 +00:00
from langchain.schema import AgentAction
_PAGE_CONTENT = """This is a page about LangChain.
It is a really cool framework.
What isn't there to love about langchain?
Made in 2022."""
2022-11-20 04:32:45 +00:00
_FAKE_PROMPT = PromptTemplate(input_variables=["input"], template="{input}")
class FakeListLLM(LLM, BaseModel):
"""Fake LLM for testing that outputs elements of a list."""
responses: List[str]
i: int = -1
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "fake_list"
2022-12-15 15:53:32 +00:00
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
"""Increment counter, and then return response in that index."""
self.i += 1
return self.responses[self.i]
2022-11-09 06:17:10 +00:00
@property
def _identifying_params(self) -> Mapping[str, Any]:
return {}
class FakeDocstore(Docstore):
"""Fake docstore for testing purposes."""
def search(self, search: str) -> Union[str, Document]:
"""Return the fake document."""
document = Document(page_content=_PAGE_CONTENT)
return document
def test_predict_until_observation_normal() -> None:
"""Test predict_until_observation when observation is made normally."""
2022-11-22 14:16:26 +00:00
outputs = ["foo\nAction 1: Search[foo]"]
fake_llm = FakeListLLM(responses=outputs)
2022-11-22 14:16:26 +00:00
tools = [
Tool(name="Search", func=lambda x: x, description="foo"),
Tool(name="Lookup", func=lambda x: x, description="bar"),
2022-11-22 14:16:26 +00:00
]
agent = ReActDocstoreAgent.from_llm_and_tools(fake_llm, tools)
2022-12-19 02:51:23 +00:00
output = agent.plan([], input="")
expected_output = AgentAction("Search", "foo", outputs[0])
assert output == expected_output
def test_predict_until_observation_repeat() -> None:
"""Test when no action is generated initially."""
2022-11-22 14:16:26 +00:00
outputs = ["foo", " Search[foo]"]
fake_llm = FakeListLLM(responses=outputs)
2022-11-22 14:16:26 +00:00
tools = [
Tool(name="Search", func=lambda x: x, description="foo"),
Tool(name="Lookup", func=lambda x: x, description="bar"),
2022-11-22 14:16:26 +00:00
]
agent = ReActDocstoreAgent.from_llm_and_tools(fake_llm, tools)
2022-12-19 02:51:23 +00:00
output = agent.plan([], input="")
expected_output = AgentAction("Search", "foo", "foo\nAction 1: Search[foo]")
assert output == expected_output
def test_react_chain() -> None:
"""Test react chain."""
responses = [
"I should probably search\nAction 1: Search[langchain]",
"I should probably lookup\nAction 2: Lookup[made]",
"Ah okay now I know the answer\nAction 3: Finish[2022]",
]
fake_llm = FakeListLLM(responses=responses)
react_chain = ReActChain(llm=fake_llm, docstore=FakeDocstore())
2022-11-22 14:16:26 +00:00
output = react_chain.run("when was langchain made")
assert output == "2022"
def test_react_chain_bad_action() -> None:
"""Test react chain when bad action given."""
bad_action_name = "BadAction"
responses = [
f"I'm turning evil\nAction 1: {bad_action_name}[langchain]",
"Oh well\nAction 2: Finish[curses foiled again]",
]
fake_llm = FakeListLLM(responses=responses)
react_chain = ReActChain(llm=fake_llm, docstore=FakeDocstore())
output = react_chain.run("when was langchain made")
assert output == "curses foiled again"