langchain/libs/community/langchain_community/utilities/tavily_search.py

184 lines
6.7 KiB
Python
Raw Normal View History

community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463) Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
2023-12-11 21:53:30 +00:00
"""Util that calls Tavily Search API.
In order to set this up, follow instructions at:
"""
import json
from typing import Dict, List, Optional
import aiohttp
import requests
from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator
from langchain_core.utils import get_from_dict_or_env
TAVILY_API_URL = "https://api.tavily.com"
class TavilySearchAPIWrapper(BaseModel):
"""Wrapper for Tavily Search API."""
tavily_api_key: str
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator(pre=True)
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and endpoint exists in environment."""
tavily_api_key = get_from_dict_or_env(
values, "tavily_api_key", "TAVILY_API_KEY"
)
values["tavily_api_key"] = tavily_api_key
return values
def raw_results(
self,
query: str,
max_results: Optional[int] = 5,
search_depth: Optional[str] = "advanced",
include_domains: Optional[List[str]] = [],
exclude_domains: Optional[List[str]] = [],
include_answer: Optional[bool] = False,
include_raw_content: Optional[bool] = False,
include_images: Optional[bool] = False,
) -> Dict:
params = {
"api_key": self.tavily_api_key,
"query": query,
"max_results": max_results,
"search_depth": search_depth,
"include_domains": include_domains,
"exclude_domains": exclude_domains,
"include_answer": include_answer,
"include_raw_content": include_raw_content,
"include_images": include_images,
}
response = requests.post(
# type: ignore
f"{TAVILY_API_URL}/search",
json=params,
)
response.raise_for_status()
return response.json()
def results(
self,
query: str,
max_results: Optional[int] = 5,
search_depth: Optional[str] = "advanced",
include_domains: Optional[List[str]] = [],
exclude_domains: Optional[List[str]] = [],
include_answer: Optional[bool] = False,
include_raw_content: Optional[bool] = False,
include_images: Optional[bool] = False,
) -> List[Dict]:
"""Run query through Tavily Search and return metadata.
Args:
query: The query to search for.
max_results: The maximum number of results to return.
search_depth: The depth of the search. Can be "basic" or "advanced".
include_domains: A list of domains to include in the search.
exclude_domains: A list of domains to exclude from the search.
include_answer: Whether to include the answer in the results.
include_raw_content: Whether to include the raw content in the results.
include_images: Whether to include images in the results.
Returns:
query: The query that was searched for.
follow_up_questions: A list of follow up questions.
response_time: The response time of the query.
answer: The answer to the query.
images: A list of images.
results: A list of dictionaries containing the results:
title: The title of the result.
url: The url of the result.
content: The content of the result.
score: The score of the result.
raw_content: The raw content of the result.
""" # noqa: E501
raw_search_results = self.raw_results(
query,
max_results=max_results,
search_depth=search_depth,
include_domains=include_domains,
exclude_domains=exclude_domains,
include_answer=include_answer,
include_raw_content=include_raw_content,
include_images=include_images,
)
return self.clean_results(raw_search_results["results"])
async def raw_results_async(
self,
query: str,
max_results: Optional[int] = 5,
search_depth: Optional[str] = "advanced",
include_domains: Optional[List[str]] = [],
exclude_domains: Optional[List[str]] = [],
include_answer: Optional[bool] = False,
include_raw_content: Optional[bool] = False,
include_images: Optional[bool] = False,
) -> Dict:
"""Get results from the Tavily Search API asynchronously."""
# Function to perform the API call
async def fetch() -> str:
params = {
"api_key": self.tavily_api_key,
"query": query,
"max_results": max_results,
"search_depth": search_depth,
"include_domains": include_domains,
"exclude_domains": exclude_domains,
"include_answer": include_answer,
"include_raw_content": include_raw_content,
"include_images": include_images,
}
async with aiohttp.ClientSession() as session:
async with session.post(f"{TAVILY_API_URL}/search", json=params) as res:
if res.status == 200:
data = await res.text()
return data
else:
raise Exception(f"Error {res.status}: {res.reason}")
results_json_str = await fetch()
return json.loads(results_json_str)
async def results_async(
self,
query: str,
max_results: Optional[int] = 5,
search_depth: Optional[str] = "advanced",
include_domains: Optional[List[str]] = [],
exclude_domains: Optional[List[str]] = [],
include_answer: Optional[bool] = False,
include_raw_content: Optional[bool] = False,
include_images: Optional[bool] = False,
) -> List[Dict]:
results_json = await self.raw_results_async(
query=query,
max_results=max_results,
search_depth=search_depth,
include_domains=include_domains,
exclude_domains=exclude_domains,
include_answer=include_answer,
include_raw_content=include_raw_content,
include_images=include_images,
)
return self.clean_results(results_json["results"])
def clean_results(self, results: List[Dict]) -> List[Dict]:
"""Clean results from Tavily Search API."""
clean_results = []
for result in results:
clean_results.append(
{
"url": result["url"],
"content": result["content"],
}
)
return clean_results