2023-05-24 22:51:12 +00:00
|
|
|
"""Test Vertex AI API wrapper.
|
2023-12-18 03:24:22 +00:00
|
|
|
In order to run this test, you need to install VertexAI SDK
|
2023-10-30 22:10:05 +00:00
|
|
|
pip install google-cloud-aiplatform>=1.35.0
|
2023-05-24 22:51:12 +00:00
|
|
|
|
2023-12-18 03:24:22 +00:00
|
|
|
Your end-user credentials would be used to make the calls (make sure you've run
|
2023-05-24 22:51:12 +00:00
|
|
|
`gcloud auth login` first).
|
|
|
|
"""
|
2023-12-21 17:15:19 +00:00
|
|
|
import pytest
|
|
|
|
|
2023-12-11 21:53:30 +00:00
|
|
|
from langchain_community.embeddings import VertexAIEmbeddings
|
2023-05-24 22:51:12 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_embedding_documents() -> None:
|
|
|
|
documents = ["foo bar"]
|
|
|
|
model = VertexAIEmbeddings()
|
|
|
|
output = model.embed_documents(documents)
|
|
|
|
assert len(output) == 1
|
|
|
|
assert len(output[0]) == 768
|
|
|
|
assert model.model_name == model.client._model_id
|
2023-12-21 17:15:19 +00:00
|
|
|
assert model.model_name == "textembedding-gecko@001"
|
2023-05-24 22:51:12 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_embedding_query() -> None:
|
|
|
|
document = "foo bar"
|
|
|
|
model = VertexAIEmbeddings()
|
|
|
|
output = model.embed_query(document)
|
|
|
|
assert len(output) == 768
|
2023-05-29 13:57:41 +00:00
|
|
|
|
|
|
|
|
2023-12-18 03:24:22 +00:00
|
|
|
def test_large_batches() -> None:
|
|
|
|
documents = ["foo bar" for _ in range(0, 251)]
|
|
|
|
model_uscentral1 = VertexAIEmbeddings(location="us-central1")
|
|
|
|
model_asianortheast1 = VertexAIEmbeddings(location="asia-northeast1")
|
|
|
|
model_uscentral1.embed_documents(documents)
|
|
|
|
model_asianortheast1.embed_documents(documents)
|
|
|
|
assert model_uscentral1.instance["batch_size"] >= 250
|
|
|
|
assert model_asianortheast1.instance["batch_size"] < 50
|
|
|
|
|
|
|
|
|
2023-05-29 13:57:41 +00:00
|
|
|
def test_paginated_texts() -> None:
|
|
|
|
documents = [
|
|
|
|
"foo bar",
|
|
|
|
"foo baz",
|
|
|
|
"bar foo",
|
|
|
|
"baz foo",
|
|
|
|
"bar bar",
|
|
|
|
"foo foo",
|
|
|
|
"baz baz",
|
|
|
|
"baz bar",
|
|
|
|
]
|
|
|
|
model = VertexAIEmbeddings()
|
|
|
|
output = model.embed_documents(documents)
|
|
|
|
assert len(output) == 8
|
|
|
|
assert len(output[0]) == 768
|
|
|
|
assert model.model_name == model.client._model_id
|
2023-12-21 17:15:19 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_warning(caplog: pytest.LogCaptureFixture) -> None:
|
|
|
|
_ = VertexAIEmbeddings()
|
|
|
|
assert len(caplog.records) == 1
|
|
|
|
record = caplog.records[0]
|
|
|
|
assert record.levelname == "WARNING"
|
|
|
|
expected_message = (
|
|
|
|
"Model_name will become a required arg for VertexAIEmbeddings starting from "
|
|
|
|
"Feb-01-2024. Currently the default is set to textembedding-gecko@001"
|
|
|
|
)
|
|
|
|
assert record.message == expected_message
|